Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 594: 243-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779842

RESUMO

Structure determination of G protein-coupled receptors (GPCRs) in the inactive state bound to high-affinity antagonists has been very successful through the implementation of a number of protein engineering and crystallization strategies. However, the structure determination of GPCRs in their fully active state coupled to a G protein is still very challenging. Recently, mini-G proteins were developed, which recapitulate the coupling of a full heterotrimeric G protein to a GPCR despite being less than one-third of the size. This allowed the structure determination of the agonist-bound adenosine A2A receptor (A2AR) coupled to mini-Gs. Although this is extremely encouraging, A2AR is very stable compared with many other GPCRs, particularly when an agonist is bound. In contrast, the agonist-bound conformation of the human corticotropin-releasing factor receptor is considerably less stable, impeding the formation of good quality crystals for structure determination. We have therefore developed a novel strategy for the thermostabilization of a GPCR-mini-G protein complex. In this chapter, we will describe the theoretical and practical principles of the thermostability assay for stabilizing this complex, discuss its strengths and weaknesses, and show some typical results from the thermostabilization process.


Assuntos
Bioquímica/métodos , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/agonistas , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas de Anfíbios/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Radioisótopos do Iodo/química , Hormônios Peptídicos/química , Estabilidade Proteica , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo
2.
PLoS One ; 12(4): e0175642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426733

RESUMO

Mini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state. The first mini-G protein developed was mini-Gs. Here we extend the family of mini-G proteins to include mini-Golf, mini-Gi1, mini-Go1 and the chimeras mini-Gs/q and mini-Gs/i. The mini-G proteins were shown to couple to relevant GPCRs and to form stable complexes with purified receptors that could be purified by size exclusion chromatography. Agonist-bound GPCRs coupled to a mini-G protein showed higher thermal stability compared to the agonist-bound receptor alone. Fusion of GFP at the N-terminus of mini-G proteins allowed receptor coupling to be monitored by fluorescence-detection size exclusion chromatography (FSEC) and, in a separate assay, the affinity of mini-G protein binding to detergent-solubilised receptors was determined. This work provides the foundation for the development of any mini-G protein and, ultimately, for the structure determination of GPCRs in a fully active state.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/classificação , Humanos , Ligantes , Filogenia , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
3.
Nat Protoc ; 11(8): 1554-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27466713

RESUMO

The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese , Temperatura , Sequência de Aminoácidos , Detergentes/química , Modelos Moleculares , Mutação , Conformação Proteica , Estabilidade Proteica , Solubilidade
5.
PLoS One ; 9(3): e89613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595172

RESUMO

One successful approach to obtaining high-resolution crystal structures of G-protein coupled receptors is the introduction of thermostabilising mutations within the receptor. This technique allows the generation of receptor constructs stabilised into different conformations suitable for structural studies. Previously, we functionally characterised a number of mutants of the adenosine A2A receptor, thermostabilised either in an agonist or antagonist conformation, using a yeast cell growth assay and demonstrated that there is a correlation between thermostability and loss of constitutive activity. Here we report the functional characterisation of 30 mutants intermediate between the Rag23 (agonist conformation mutant) and the wild-type receptor using the same yeast signalling assay with the aim of gaining greater insight into the role individual amino acids have in receptor function. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for alanine abolishes constitutive activity. In addition, the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. A184L and L272A mutations also reduce constitutive activity and potency although to a lesser extent than the R199A and L208A. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put our findings into a structural context.


Assuntos
Arginina/fisiologia , Leucina/fisiologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/fisiologia , Arginina/genética , Leucina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...