Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(536)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213632

RESUMO

Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-ß (TGFß) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFß signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFß isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFß isoform expressed in many types of human tumors, suggesting that TGFß1 may be a key contributor to primary CBT resistance. To test whether selective TGFß1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFß1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFß1 was also effective in tumors expressing more than one TGFß isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFß1 activation may avoid dose-limiting toxicities previously observed with pan-TGFß inhibitors. These results establish a rationale for exploring selective TGFß1 inhibition to overcome primary resistance to CBT.


Assuntos
Neoplasias , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos , Cardiotoxicidade , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Ratos , Transdução de Sinais
2.
J Biol Chem ; 295(16): 5404-5418, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32075906

RESUMO

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor ß superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor ß superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen-antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Simulação de Acoplamento Molecular , Miostatina/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Humanos , Miostatina/antagonistas & inibidores , Miostatina/imunologia , Ligação Proteica , Estabilidade Proteica
3.
Methods Mol Biol ; 1844: 169-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242710

RESUMO

Most cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase. One major class of E3, with ca. 600 members, harbors RING or the RING-like SP-RING or Ubox domains. These RING/RING-like domains bind and activate the E2-Ubl thioester by stabilizing a conformation that is optimal for nucleophilic attack by the side chain residue (typically lysine) on the substrate. These RING/RING-like domains typically function together with other domains or protein complexes that often serve to recruit particular substrates. How these RING/RING-like E3 domains function to activate the E2-Ubl thioester while engaged with substrate remains poorly understood. We describe a strategy to generate and purify a unique E2Ubc9-UblSUMO thioester mimetic that can be cross-linked to the SubstratePCNA at Lys164, a conjugation site that is only observed in the presence of E3Siz1. We describe two techniques to cross-link the E2Ubc9-UblSUMO thioester mimetic active site to the site of modification on PCNA and the subsequent purification of these complexes. Finally, we describe the reconstitution and purification of the E2Ubc9-UblSUMO-PCNA complex with the E3Siz1 and purification that enabled its crystallization and structure determination. We think this technique can be extended to other E2-Ubl-substrate/E3 complexes to better probe the function and specificity of RING-based E3 Ubl ligases.


Assuntos
Complexos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Substituição de Aminoácidos , Expressão Gênica , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina , Ubiquitinação
4.
Nature ; 536(7616): 304-8, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27509863

RESUMO

Post-translational protein modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins such as small ubiquitin-like modifier (SUMO) regulates processes including protein homeostasis, the DNA damage response, and the cell cycle. Proliferating cell nuclear antigen (PCNA) is modified by Ub or poly-Ub at lysine (Lys)164 after DNA damage to recruit repair factors. Yeast PCNA is modified by SUMO on Lys164 and Lys127 during S-phase to recruit the anti-recombinogenic helicase Srs2. Lys164 modification requires specialized E2/E3 enzyme pairs for SUMO or Ub conjugation. For SUMO, Lys164 modification is strictly dependent on the E3 ligase Siz1, suggesting the E3 alters E2 specificity to promote Lys164 modification. The structural basis for substrate interactions in activated E3/E2­Ub/Ubl complexes remains unclear. Here we report an engineered E2 protein and cross-linking strategies that trap an E3/E2­Ubl/substrate complex for structure determination, illustrating how an E3 can bypass E2 specificity to force-feed a substrate lysine into the E2 active site.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios RING Finger , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA Helicases/metabolismo , Ativação Enzimática , Lisina/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Engenharia de Proteínas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo
5.
J Biol Chem ; 289(49): 34114-28, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25342744

RESUMO

The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of (125)I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼(125)I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼(125)I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 µm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe(395). Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349-10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Poliubiquitina/metabolismo , Subunidades Proteicas/química , Shigella flexneri/química , Ubiquitina-Proteína Ligases/química , Regulação Alostérica , Sítio Alostérico , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Radioisótopos do Iodo , Cinética , Modelos Moleculares , Mutação , Poliubiquitina/genética , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shigella flexneri/enzimologia , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Annu Rev Biophys ; 43: 357-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24773014

RESUMO

Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitinação , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo
7.
J Biol Chem ; 288(12): 8209-8221, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23408431

RESUMO

Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily.


Assuntos
Fatores de Transcrição/química , Regulação Alostérica , Substituição de Aminoácidos , Animais , Bovinos , Humanos , Cinética , Poliubiquitina , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas com Motivo Tripartido , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases , Ubiquitinação
8.
J Biol Chem ; 287(1): 311-321, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22069333

RESUMO

Initial rates of E1-catalyzed E2 transthiolation have been used as a reporter function to probe the mechanism of 125I-ubiquitin transfer between activation and ligation half-reactions of ubiquitin conjugation. A functional survey of 11 representative human E2 paralogs reveals similar Km for binding to human Uba1 ternary complex (Km(ave)=121±72 nm) and kcat for ubiquitin transfer (kcat(ave)=4.0±1.2 s(-1)), suggesting that they possess a conserved binding site and transition state geometry and that they compete for charging through differences in intracellular concentration. Sequence analysis and mutagenesis localize this binding motif to three basic residues within Helix 1 of the E2 core domain, confirmed by transthiolation kinetics. Partial conservation of the motif among E2 paralogs not recognized by Uba1 suggests that another factor(s) account for the absolute specificity of cognate E2 binding. Truncation of the Uba1 carboxyl-terminal ß-grasp domain reduces cognate Ubc2b binding by 31-fold and kcat by 3.5×10(4)-fold, indicating contributions to E2 binding and transition state stabilization. Truncation of the paralogous domain from the Nedd8 activating enzyme has negligible effect on cognate Ubc12 transthiolation but abrogates E2 specificity toward non-cognate carrier proteins. Exchange of the ß-grasp domains between ubiquitin and Nedd8 activating enzymes fails to reverse the effect of truncation. Thus, the conserved Helix 1 binding motif and the ß-grasp domain direct general E2 binding, whereas the latter additionally serves as a specificity filter to exclude charging of non-cognate E2 paralogs in order to maintain the fidelity of downstream signaling.


Assuntos
Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Sequência Conservada , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteína NEDD8 , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Enzimas Ativadoras de Ubiquitina/química
9.
Subcell Biochem ; 54: 1-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21222269

RESUMO

Attachment of ubiquitin and ubiquitin-like proteins to cellular targets represents a fundamental regulatory strategy within eukaryotes and exhibits remarkably pleiotropic effects on cell function. These posttranslational modifications share a common mechanism comprised of three steps: an activating enzyme to couple ATP hydrolysis to formation of a high-energy intermediate at the carboxyl terminus of ubiquitin or the ubiquitin-like protein, a ligase to couple aminolysis of the activated polypeptide to formation of the new peptide bond and a carrier protein to link the two half reactions. The activating enzymes play pivotal roles in defining pathway specificity for ubiquitin or the ubiquitin-like protein and for target protein specificity in charging the cognate carrier protein supporting downstream ligation steps. Therefore, the family of activating enzymes are critical components of cell regulation that have only recently been recognized as important pharmacological targets.


Assuntos
Ubiquitina , Ubiquitinas , Proteínas de Transporte , Humanos , Ligases , Proteínas/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
10.
Dalton Trans ; (13): 2006-11, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15252588

RESUMO

4-(1,4,7,10-Tetraazacyclotetradec-1-yl)methylbenzoic acid (cycmba, 1) has been synthesized, as a step towards the eventual development of sequence-specific hydrolytic complexes. A cobalt(III) complex of 1, [Co(cycmba)Cl2]Cl.1.5H2O (.1.5H2O) was found to be active against both an activated phosphodiester compound, bis(nitrophenyl)phosphate (BNPP), and supercoiled DNA. The presence of the benzoate group depresses the rate of hydrolysis of the ligand-Co(III) system at neutral pH, as confirmed by the kinetics results of a methyl ester analog. The ability of (2.1.5H2O) to bind to solid substrates and remain active was also demonstrated by attachment of the molecule to agarose beads.


Assuntos
Ácidos Carboxílicos/química , Cobalto/química , DNA/química , Compostos Heterocíclicos/química , Catálise , Cloretos/análise , Cloretos/química , Ciclamos , Concentração de Íons de Hidrogênio , Hidrólise , Ligantes , Microesferas , Estrutura Molecular , Potenciometria , Sefarose , Análise Espectral , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...