Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 4(1): 42, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729615

RESUMO

BACKGROUND: The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. RESULTS: Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. CONCLUSIONS: Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields.

2.
Dis Aquat Organ ; 154: 33-48, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318383

RESUMO

Flathead grey mullet Mugil cephalus is an important species in the aquaculture industry in the Mediterranean basin and throughout the world. During the last 10 yr, M. cephalus breeding stocks, larvae, and juveniles cultured in Eilat (Israel) have shown neurological signs such as uncoordinated circular swimming, while also presenting oral hemorrhages. Death follows days after the onset of the clinical signs, and mortality rates may reach 80% in some cases, causing high economical losses. Bacteriology isolations from different organs, including the brain, and a Koch's postulate experiment, confirmed Vibrio harveyi as the causative agent. Histological analyses showed the presence of the bacterium in different organs. However, in the brain, the bacterium was observed only within blood vessels and meninges. In some samples, mild to severe brain tissue damage was seen. In order to understand the virulence and lethality of V. harveyi, a median lethal dose was calculated, and the result was 106 colony-forming units fish-1. To the best of our knowledge, this is the first report that describes V. harveyi isolated from the brain of M. cephalus and validates it as an etiological agent causing neurological signs in this fish species.


Assuntos
Smegmamorpha , Vibrio , Animais , Peixes , Morbidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...