Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orbit ; : 1-11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591750

RESUMO

PURPOSE: The gold standard for skin cancer diagnosis is surgical excisional biopsy and histopathological examination. Several non-invasive diagnostic techniques exist, although they have not yet translated into clinical use. This is a proof-of-concept study to assess the possibility of imaging an angiosarcoma in the periocular area. METHODS: We use laser speckle, hyperspectral, and photoacoustic imaging to monitor blood perfusion and oxygen saturation, as well as the molecular composition of the tissue. The information obtained from each imaging modality was combined in order to yield a more comprehensive picture of the function, as well as molecular composition of a rapidly growing cutaneous angiosarcoma in the periocular area. RESULTS: We found an increase in perfusion coupled with a reduction in oxygen saturation in the angiosarcoma. We could also extract the molecular composition of the angiosarcoma at a depth, depicting both the oxygen saturation and highlighting the presence of connective tissue via collagen. CONCLUSIONS: We demonstrate the different physiological parameters that can be obtained with the different techniques and how these can be combined to provide detailed 3D maps of the functional and molecular properties of tumors useful in preoperative assessment.

2.
iScience ; 27(5): 109653, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38680659

RESUMO

In the dawning era of artificial intelligence (AI), health care stands to undergo a significant transformation with the increasing digitalization of patient data. Digital imaging, in particular, will serve as an important platform for AI to aid decision making and diagnostics. A growing number of studies demonstrate the potential of automatic pre-surgical skin tumor delineation, which could have tremendous impact on clinical practice. However, current methods rely on having ground truth images in which tumor borders are already identified, which is not clinically possible. We report a novel approach where hyperspectral images provide spectra from small regions representing healthy tissue and tumor, which are used to generate prediction maps using artificial neural networks (ANNs), after which a segmentation algorithm automatically identifies the tumor borders. This circumvents the need for ground truth images, since an ANN model is trained with data from each individual patient, representing a more clinically relevant approach.

3.
Microvasc Res ; 150: 104573, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37390964

RESUMO

BACKGROUND: Optical spectroscopy is commonly used clinically to monitor oxygen saturation in tissue. The most commonly employed technique is pulse oximetry, which provides a point measurement of the arterial oxygen saturation and is commonly used for monitoring systemic hemodynamics, e.g. during anesthesia. Hyperspectral imaging (HSI) is an emerging technology that enables spatially resolved mapping of oxygen saturation in tissue (sO2), but needs to be further developed before implemented in clinical practice. The aim of this study is to demonstrate the applicability of HSI for mapping the sO2 in reconstructive surgery and demonstrate how spectral analysis can be used to obtain clinically relevant sO2 values. METHODS: Spatial scanning HSI was performed on cutaneous forehead flaps, raised as part of a direct brow lift, in eight patients. Pixel-by-pixel spectral analysis, accounting for the absorption from multiple chromophores, was performed and compared to previous analysis techniques to assess sO2. RESULTS: Spectral unmixing using a broad spectral range, and accounting for the absorption of melanin, fat, collagen, and water, provided a more clinically relevant estimate of sO2 than conventional techniques, where typically only spectral features associated with absorption of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin are considered. We demonstrate its clinical applicability by generating sO2 maps of partially excised forehead flaps showed a gradual decrease in sO2 along the length of the flap from 95 % at the flap base to 85 % at the flap tip. After being fully excised, sO2 in the entire flap decreased to 50 % within a few minutes. CONCLUSIONS: The results demonstrate the capability of sO2 mapping in reconstructive surgery in patients using HSI. Spectral unmixing, accounting for multiple chromophores, provides sO2 values that are in accordance with physiological expectations in patients with normal functioning microvascularization. Our results suggest that HSI methods that yield reliable spectra are to be preferred, so that the analysis can produce results that are of clinical relevance.


Assuntos
Imageamento Hiperespectral , Cirurgia Plástica , Humanos , Oxigênio , Testa/cirurgia , Saturação de Oxigênio
4.
Ophthalmic Plast Reconstr Surg ; 38(5): 462-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35470293

RESUMO

PURPOSE: Epinephrine is used in local anesthetics to induce vasoconstriction and thus reduce bleeding and prolong the anesthetic effect. Finding the optimal delay between the administration of the anesthetic and skin incision to ensure vasoconstriction and minimize bleeding is important and has recently become the subject of debate. This is the first study to assess blood perfusion and oxygen saturation (sO 2 ) simultaneously in response to a local anesthetic containing epinephrine in human oculoplastic surgery. METHODS: A local anesthetic consisting of lidocaine and epinephrine (20 mg/ml + 12.5 µg/ml) was injected in the eyelids of 9 subjects undergoing blepharoplasty. The perfusion and sO 2 of the eyelids were monitored using laser speckle contrast imaging and hyperspectral imaging, respectively. RESULTS: Laser speckle contrast imaging monitoring showed a decrease in perfusion over time centrally at the site of injection. Half-maximum effect was reached after 34 seconds, and full effect after 115 seconds, determined by exponential fitting. The drop in perfusion decreased gradually further away from the injection site and hypoperfusion was less prominent 4 mm from the injection site, with a spatially dependent half-maximum effect of 231 seconds. Hyperspectral imaging showed only a slight decrease in sO 2 of 11 % at the injection site. CONCLUSIONS: The optimal time delay for skin incision in oculoplastic surgery is approximately 2 minutes after the injection of lidocaine with epinephrine. Longer delay does not lead to a further decrease in perfusion. As sO 2 was only slightly reduced after injection, the results indicate that the use of epinephrine is safe in the periocular region.


Assuntos
Anestésicos Locais , Imagem de Contraste de Manchas a Laser , Método Duplo-Cego , Epinefrina/farmacologia , Humanos , Lidocaína/farmacologia , Vasoconstritores/farmacologia
5.
Biomed Opt Express ; 13(1): 410-425, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154881

RESUMO

Radical excision of periorbital skin tumors is difficult without sacrificing excessive healthy tissue. Photoacoustic (PA) imaging is an emerging non-invasive biomedical imagi--ng modality that has potential for intraoperative micrographic control of surgical margins. This is the first study to assess the feasibility of PA imaging for the detection of periocular skin cancer. Eleven patients underwent surgical excision of periocular skin cancer, one of which was a malignant melanoma (MM), eight were basal cell carcinomas (BCCs), and two squamous cell carcinomas (SCCs). Six tumors were located in the eyelid, and five in periocular skin. The excised samples, as well as healthy eyelid samples, were scanned with PA imaging postoperatively, using 59 wavelengths in the range 680-970 nm, to generate 3D multispectral images. Spectral unmixing was performed using endmember spectra for oxygenated and deoxygenated Hb, melanin, and collagen, to iden--tify the chromophore composition of tumors and healthy eyelid tissue. After PA scanning, the tumor samples were examined histopathologically using standard hematoxylin and eosin staining. The PA spectra of healthy eyelid tissue were dominated by melanin in the skin, oxygenated and deoxygenated hemoglobin in the orbicularis oculi muscle, and collagen in the tarsal plate. Multiwavelength 3D scanning provided spectral information on the three tumor types. The spectrum from the MM was primarily reconstructed by the endmember melanin, while the SCCs showed contributions primarily from melanin, but also HbR and collagen. BCCs showed contributions from all four endmembers with a predominance of HbO2 and HbR. PA imaging may be used to distinguish different kinds of periocular skin tumors, paving the way for future intraoperative micrographic control.

6.
Ophthalmic Plast Reconstr Surg ; 38(6): 522-534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34919068

RESUMO

PURPOSE: Knowledge of how blood perfusion is affected during and after reconstructive surgery is of great importance to predict the survival of grafts and flaps. When commonly used reconstructive procedures were developed a century ago, they were based on empirical observations of clinical outcome. METHODS: This is a comprehensive literature review that summarizes the current state of knowledge regarding microvascular perfusion monitoring during oculoplastic procedures. RESULTS: Over the years, a number of techniques for perfusion monitoring have been developed as an attempt to be more objective than clinical examination using traditional methods such as observations of skin temperature, turgor, color, smell, and capillary refill time. There are limited publications regarding microvascular perfusion monitoring during reconstructive procedures in the periocular area. Modern laser-based techniques have been attractive due to their noninvasive nature. CONCLUSIONS: Today, modern, noninvasive techniques are available to monitor perfusion during and after surgery. This has increased our knowledge on the perfusion in common oculoplastic surgery procedures. A detailed understanding of how blood perfusion is affected will hopefully allow the improvement of surgical techniques for better clinical outcome.


Assuntos
Oftalmologia , Procedimentos de Cirurgia Plástica , Humanos , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/irrigação sanguínea , Perfusão
7.
Biomed Opt Express ; 12(7): 4097-4114, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457401

RESUMO

Surgical excision followed by histopathological examination is the gold standard for the diagnosis and staging of melanoma. Reoperations and unnecessary removal of healthy tissue could be reduced if non-invasive imaging techniques were available for presurgical tumor delineation. However, no technique has gained widespread clinical use to date due to shallow imaging depth or the absence of functional imaging capability. Photoacoustic (PA) imaging is a novel technology that combines the strengths of optical and ultrasound imaging to reveal the molecular composition of tissue at high resolution. Encouraging results have been obtained from previous animal and human studies on melanoma, but there is still a lack of clinical data. This is the largest study of its kind to date, including 52 melanomas and nevi. 3D multiwavelength PA scanning was performed ex vivo, using 59 excitation wavelengths from 680 nm to 970 nm. Spectral unmixing over this broad wavelength range, accounting for the absorption of several tissue chromophores, provided excellent contrast between healthy tissue and tumor. Combining the results of spectral analysis with spatially resolved information provided a map of the tumor borders in greater detail than previously reported. The tumor dimensions determined with PA imaging were strongly correlated with those determined by histopathological examination for both melanomas and nevi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...