Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(35): e2300390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118859

RESUMO

Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.


Assuntos
Vesículas Extracelulares , Nanosferas , Neoplasias da Próstata , Masculino , Humanos , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Linhagem Celular
2.
Acta Biomater ; 151: 333-345, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914692

RESUMO

Human embryonic stem cells (hESCs) and their derived products offer great promise for targeted therapies and drug screening, however, the hESC differentiation process of mature neurons is a lengthy process. To accelerate the neuron production, an acoustic stimulator producing surface acoustic waves (SAWs) is proposed and realized by clamping a flexible printed circuit board (PCB) directly onto a piezoelectric substrate. Neural differentiation of the hESCs is greatly accelerated after application of the acoustic stimulations. Acceleration mechanisms for neural differentiation have been explored by bulk RNA sequencing, quantitative polymerase chain reaction (qPCR) and immunostaining. The RNA sequencing results show changes of extracellular matrix-related and physiological activity-related gene expression in the low or medium SAW dose group and the high SAW dose group, respectively. The neural progenitor cell markers, including Pax6, Sox1, Sox2, Sox10 and Nkx2-1, are less expressed in the SAW dose groups compared with the control group by the qPCR. Other genes including Alk, Cenpf, Pcdh17, and Actn3 are also found to be regulated by the acoustic stimulation. Moreover, the immunostaining confirmed that more mature neuron marker Tuj1-positive cells, while less stem cell marker Sox2-positive cells, are presented in the SAW dose groups. These results indicate that the SAW stimulation accelerated neural differentiation process. The acoustic stimulator fabricated by using the PCB is a promising tool in regulation of stem cell differentiation process applied in cell therapy. STATEMENT OF SIGNIFICANCE: Human embryonic stem cells (hESC) are used for investigating the complex mechanisms involved in the development of specialized biological cells and organs. Different types of hESCs derived cell products can be used for cell therapy procedures aiming to regenerate functional tissues in patients who suffer from various degenerative diseases. Accelerating the hESCs' differentiation process can considerably benefit the clinical utilization of these cells. This study develops a highly effective acoustic stimulator working at ∼20 MHz to investigate what roles do acousto-mechanical stimuli play in the differentiation of hESCs. Our results show that acoustic dose alters the extracellular matrix and physiological activity-related gene expression, which indicates that the acoustic stimulation is an important tool for regulating the stem cells' differentiation processes in cell therapy.


Assuntos
Células-Tronco Embrionárias Humanas , Actinina/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Humanos , Neurônios/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...