Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 12: 745-754, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28412652

RESUMO

Resveratrol (RSV) is a naturally occurring polyphenolic compound endowed with interesting biological properties/functions amongst which are its activity as an antioxidant and as Sirtuin activating compound towards SIRT1 in mammals. Sirtuins comprise a family of NAD+-dependent protein deacetylases that are involved in many physiological and pathological processes including aging and age-related diseases. These enzymes are conserved across species and SIRT1 is the closest mammalian orthologue of Sir2 of Saccharomyces cerevisiae. In the field of aging researches, it is well known that Sir2 is a positive regulator of replicative lifespan and, in this context, the RSV effects have been already examined. Here, we analyzed RSV effects during chronological aging, in which Sir2 acts as a negative regulator of chronological lifespan (CLS). Chronological aging refers to quiescent cells in stationary phase; these cells display a survival-based metabolism characterized by an increase in oxidative stress. We found that RSV supplementation at the onset of chronological aging, namely at the diauxic shift, increases oxidative stress and significantly reduces CLS. CLS reduction is dependent on Sir2 presence both in expired medium and in extreme Calorie Restriction. In addition, all data point to an enhancement of Sir2 activity, in particular Sir2-mediated deacetylation of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (Pck1). This leads to a reduction in the amount of the acetylated active form of Pck1, whose enzymatic activity is essential for gluconeogenesis and CLS extension.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Estilbenos/farmacologia , Acetilação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Resveratrol , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
2.
Mech Ageing Dev ; 161(Pt B): 277-287, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27320176

RESUMO

Nicotinamide (NAM), a form of vitamin B3, is a byproduct and noncompetitive inhibitor of the deacetylation reaction catalyzed by Sirtuins. These represent a family of evolutionarily conserved NAD+-dependent deacetylases that are well-known critical regulators of metabolism and aging and whose founding member is Sir2 of Saccharomyces cerevisiae. Here, we investigated the effects of NAM supplementation in the context of yeast chronological aging, the established model for studying aging of postmitotic quiescent mammalian cells. Our data show that NAM supplementation at the diauxic shift results in a phenocopy of chronologically aging sir2Δ cells. In fact, NAM-supplemented cells display the same chronological lifespan extension both in expired medium and extreme Calorie Restriction. Furthermore, NAM allows the cells to push their metabolism toward the same outcomes of sir2Δ cells by elevating the level of the acetylated Pck1. Both these cells have the same metabolic changes that concern not only anabolic pathways such as an increased gluconeogenesis but also respiratory activity in terms both of respiratory rate and state of respiration. In particular, they have a higher respiratory reserve capacity and a lower non-phosphorylating respiration that in concert with a low burden of superoxide anions can affect positively chronological aging.


Assuntos
Carbono/metabolismo , Niacinamida/metabolismo , Consumo de Oxigênio/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Deleção de Genes , Niacinamida/farmacologia , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética
3.
J Inherit Metab Dis ; 36(3): 455-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23344887

RESUMO

This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471-476, 1971; Malatesta et al, Development 127:5253-5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Comunicação Celular/fisiologia , Quimiocina CXCL12/fisiologia , Receptores CXCR4/fisiologia , Receptores CXCR/fisiologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CXCL12/metabolismo , Feto/metabolismo , Feto/patologia , Idade Gestacional , Humanos , Imuno-Histoquímica , Ligantes , Neovascularização Fisiológica/fisiologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia
4.
J Neuropathol Exp Neurol ; 71(10): 840-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23001217

RESUMO

The pathophysiology of cerebral cortical lesions in multiple sclerosis (MS) is not understood. We investigated cerebral cortex microvessels during immune-mediated demyelination in the MS model chronic murine experimental autoimmune encephalomyelitis (EAE) by immunolocalization of the endothelial cell tight junction (TJ) integral proteins claudin-5 and occludin, a structural protein of caveolae, caveolin-1, and the blood-brain barrier-specific endothelial transporter, Glut 1. In EAE-affected mice, there were areas of extensive subpial demyelination and well-demarcated lesions that extended to deeper cortical layers. Activation of microglia and absence of perivascular inflammatory infiltrates were common in these areas. Microvascular endothelial cells showed increased expression of caveolin-1 and a coincident loss of both claudin-5 and occludin normal junctional staining patterns. At a very early disease stage, claudin-5 molecules tended to cluster and form vacuoles that were also Glut 1 positive; the initially preserved occludin pattern became diffusely cytoplasmic at more advanced stages. Possible internalization of claudin-5 on TJ dismantling was suggested by its coexpression with the autophagosomal marker MAP1LC3A. Loss of TJ integrity was confirmed by fluorescein isothiocyanate-dextran experiments that showed leakage of the tracer into the perivascular neuropil. These observations indicate that, in the cerebral cortex of EAE-affected mice, there is a microvascular disease that differentially targets claudin-5 and occludin during ongoing demyelination despite only minimal inflammation.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Animais , Barreira Hematoencefálica/patologia , Caveolina 1/metabolismo , Córtex Cerebral/patologia , Claudina-5/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo
5.
Angiogenesis ; 15(4): 761-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22886085

RESUMO

During human foetal brain vascularization, activated CD31+/CD105+ endothelial cells are characterized by the emission of filopodial processes which also decorate the advancing tip of the vascular sprout. Together with filopodia, both the markers also reveal a number of plasma membrane-derived microvesicles (MVs) which are concentrated around the tip cell tuft of processes. At this site, MVs appear in tight contact with endothelial filopodia and follow these long processes, advancing into the surrounding neuropil to a possible cell target. These observations suggest that, like shedding vesicles of many other cell types that deliver signalling molecules and play a role in cell-to-cell communication, MVs sent out from endothelial tip cells could be involved in tip cell guidance and/or act on target cells, regulating cell-to-cell mutual recognition during vessel sprouting and final anastomosis. The results also suggest a new role for tip cell filopodia as conveyor processes for transporting MVs far from the cell of origin in a controlled microenvironment. Additional studies focused on the identification of MV content are needed to ultimately clarify the significance of tip cell MVs during human brain vascularization.


Assuntos
Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/imunologia , Imunofluorescência , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia
6.
Neurobiol Dis ; 43(3): 678-89, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21679768

RESUMO

Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.


Assuntos
Células-Tronco Adultas/patologia , Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Oligodendroglia/patologia , Células-Tronco Adultas/metabolismo , Animais , Linhagem da Célula/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo
7.
Ital J Anat Embryol ; 115(1-2): 95-102, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21072997

RESUMO

The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula/fisiologia , Córtex Cerebral/citologia , Oligodendroglia/citologia , Células-Tronco/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/análise , Células-Tronco Adultas/química , Animais , Antígenos/biossíntese , Antígenos/química , Astrócitos/química , Astrócitos/citologia , Biomarcadores/análise , Diferenciação Celular/fisiologia , Córtex Cerebral/química , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Microscopia Confocal/tendências , Proteína Básica da Mielina/análise , Proteínas da Mielina , Glicoproteína Associada a Mielina/análise , Glicoproteína Mielina-Oligodendrócito , Oligodendroglia/química , Proteoglicanas/biossíntese , Proteoglicanas/química , Células-Tronco/química
8.
Proc Natl Acad Sci U S A ; 106(17): 7149-54, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19369205

RESUMO

We report that oxytocin (OT), a primitive neurohypophyseal hormone, hitherto thought solely to modulate lactation and social bonding, is a direct regulator of bone mass. Deletion of OT or the OT receptor (Oxtr) in male or female mice causes osteoporosis resulting from reduced bone formation. Consistent with low bone formation, OT stimulates the differentiation of osteoblasts to a mineralizing phenotype by causing the up-regulation of BMP-2, which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expression. In contrast, OT has dual effects on the osteoclast. It stimulates osteoclast formation both directly, by activating NF-kappaB and MAP kinase signaling, and indirectly through the up-regulation of RANK-L. On the other hand, OT inhibits bone resorption by mature osteoclasts by triggering cytosolic Ca(2+) release and NO synthesis. Together, the complementary genetic and pharmacologic approaches reveal OT as a novel anabolic regulator of bone mass, with potential implications for osteoporosis therapy.


Assuntos
Osso e Ossos/metabolismo , Ocitocina/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Ocitocina/deficiência , Ocitocina/genética , Ocitocina/farmacologia
9.
FASEB J ; 23(8): 2549-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19329761

RESUMO

During space flight, severe losses of bone mass are observed. Both bone formation and resorption are probably involved, but their relative importance remains unclear. The purpose of this research is to understand the role of osteoclasts and their precursors in microgravity-induced bone loss. Three experiments on isolated osteoclasts (OCs) and on their precursors, OSTEO, OCLAST, and PITS, were launched in the FOTON-M3 mission. The OSTEO experiment was conducted for 10 d in microgravity within bioreactors with a perfusion system, where the differentiation of precursors, cultured on a synthetic 3-dimensional bonelike biomaterial, skelite, toward mature OCs was assessed. In OCLAST and in PITS experiments, differentiated OCs were cultured on devitalized bovine bone slices for 4 d in microgravity. All of the experiments were replicated on ground in the same bioreactors, and OCLAST also had an inflight centrifuge as a control. Gene expression in microgravity, compared with ground controls, demonstrated a severalfold increase in genes involved in osteoclast maturation and activity. Increased bone resorption, proved by an increased amount of collagen telopeptides released VS ground and centrifuge control, was also found. These results indicate for the first time osteoclasts and their precursors as direct targets for microgravity and mechanical forces.


Assuntos
Reabsorção Óssea/etiologia , Osteoclastos/patologia , Osteoclastos/fisiologia , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Sequência de Bases , Reatores Biológicos , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Bovinos , Diferenciação Celular , Células Cultivadas , DNA Complementar/genética , Expressão Gênica , Técnicas In Vitro , Camundongos , Células-Tronco/patologia , Células-Tronco/fisiologia , Simulação de Ausência de Peso/efeitos adversos
10.
Ann N Y Acad Sci ; 1116: 306-15, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17584987

RESUMO

Osteoblast (OB) activities have been studied on hydroxyapatite three-dimensional (3D) scaffolds in comparison with traditional planar substrata. OBs cultured on 3D displayed increased proliferation, differentiation, and matrix protein synthesis, when compared to 2D cultures on the same substrata. Confluent cultures, however, could not be maintained for long, due to insufficient fluid diffusion within 3D scaffolds that impaired cell viability. Thus, confluent OB 3D cultures were implanted on the allantochorial membrane of chick embryos. Vessels from the embryo colonized the bone-like network giving rise in the presence of OBs to an ectopic bone marrow formation in the intratrabecular spaces. In the absence of OBs, when the biomaterial alone was implanted, blood vessels were still present but hematopoietic marrow was absent. In both cases osteoclasts (OCs) derived from the host were found on the implant surface. These results indicated that scaffolds with cells can be easily vascularized and confirmed the role of OBs in the definition of the microenvironment that induce blood marrow differentiation in the intratrabecular spaces.


Assuntos
Alantoína , Células da Medula Óssea/citologia , Diferenciação Celular , Córion/citologia , Durapatita , Osteoblastos/citologia , Animais , Embrião de Galinha , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...