Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(6): 066301, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394556

RESUMO

The identification of topological superconductors usually involves searching for in-gap modes that are protected by topology. However, in current experimental settings, the smoking-gun evidence of these in-gap modes is still lacking. In this Letter, we propose to support the distinction between two-dimensional conventional s-wave and topological p-wave superconductors by above-gap transport signatures. Our method utilizes the emergence of Tomasch oscillations of quasiparticles in a junction consisting of a superconductor sandwiched between two metallic leads. We demonstrate that the behavior of the oscillations in conductance as a function of the interface barriers provides a distinctive signature for s-wave and p-wave superconductors. Specifically, the oscillations become weaker as the barrier strength increases in s-wave superconductors, while they become more pronounced in p-wave superconductors, which we prove to be a direct manifestation of the pairing symmetries. Our method can serve as a complimentary probe for identifying some classes of topological superconductors through the above-gap transport.

2.
Phys Rev Lett ; 122(12): 126802, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978091

RESUMO

Tunneling spectroscopy of one-dimensional interacting wires can be profoundly sensitive to the boundary conditions of the wire. Here, we analyze the tunneling spectroscopy of a wire coupled to capacitive metallic leads. Strikingly, with increasing many-body interactions in the wire, the impact of the boundary noise becomes more prominent. This interplay allows for a smooth crossover from standard 1D tunneling signatures into a regime where the tunneling is dominated by the fluctuations at the leads. This regime is characterized by an elevated zero-bias tunneling alongside a universal power-law decay at high energies. Furthermore, local tunneling measurements in this regime show a unique spatial dependence that marks the formation of plasmonic standing waves in the wire. Our result offers a tunable method by which to control the boundary effects and measure the interaction strength (Luttinger parameter) within the wire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...