Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(7): 2741-2750, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33399469

RESUMO

Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts in alkaline media, despite the elusive nature of their active sites. Here, we demonstrate that the origin of the OER activity in a La1-xSrxCoO3 model perovskite arises from a thin surface layer of Co hydr(oxy)oxide (CoOxHy) that interacts with trace-level Fe species present in the electrolyte, creating dynamically stable active sites. Generation of the hydr(oxy)oxide layer is a consequence of a surface evolution process driven by the A-site dissolution and O-vacancy creation. In turn, this imparts a 10-fold improvement in stability against Co dissolution and a 3-fold increase in the activity-stability factor for CoOxHy/LSCO when compared to nanoscale Co-hydr(oxy)oxides clusters. Our results suggest new design rules for active and stable perovskite oxide-based OER materials.

2.
ACS Appl Mater Interfaces ; 13(2): 3369-3376, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404211

RESUMO

The feasible commercialization of alkaline, phosphoric acid and polymer electrolyte membrane fuel cells depends on the development of oxygen reduction reaction (ORR) electrocatalysts with improved activity, stability, and selectivity. The rational design of surfaces to ensure these improved ORR catalytic requirements relies on the so-called "descriptors" (e.g., the role of covalent and noncovalent interactions on platinum surface active sites for ORR). Here, we demonstrate that through the molecular adsorption of melamine onto the Pt(111) surface [Pt(111)-Mad], the activity can be improved by a factor of 20 compared to bare Pt(111) for the ORR in a strongly adsorbing sulfuric acid solution. The Mad moieties act as "surface-blocking bodies," selectively hindering the adsorption of (bi)sulfate anions (well-known poisoning spectator of the Pt(111) active sites) while the ORR is unhindered. This modified surface is further demonstrated to exhibit improved chemical stability relative to Pt(111) patterned with cyanide species (CNad), previously shown by our group to have a similar ORR activity increase compared to bare Pt(111) in a sulfuric acid electrolyte, with Pt(111)-Mad retaining a greater than ninefold higher ORR activity relative to bare Pt(111) after extensive potential cycling as compared to a greater than threefold higher activity retained on a CNad-covered Pt(111) surface. We suggest that the higher stability of the Pt(111)-Mad interface stems from melamine's ability to form intermolecular hydrogen bonds, which effectively turns the melamine molecules into larger macromolecular entities with multiple anchoring sites and thus more difficult to remove.

3.
ACS Appl Mater Interfaces ; 12(32): 36137-36147, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667178

RESUMO

Developing next-generation battery chemistries that move beyond traditional Li-ion systems is critical to enabling transformative advances in electrified transportation and grid-level energy storage. In this work, we provide the first evidence for common descriptors for improved reversibility of metal plating/stripping in nonaqueous electrolytes for multivalent ion batteries. Focusing first on the specific role of chloride (Cl-) in promoting electrochemical reversibility in multivalent systems, rotating disk (RDE) and ring-disk electrode (RRDE) investigations were performed utilizing a variety of divalent cations (Mg2+, Zn2+, and Cu2+) and the bis-(trifluoromethane sulfonyl) imide (TFSI-) anion. By introducing varying concentrations of Cl-, a cooperative effect is observed between TFSI- and Cl- that yields the more reversible behavior of mixed electrolytes relative to electrolytes containing only TFSI-. This effect is shown to be general for Mg, Zn, and Cu electrodeposition, and mechanistic understanding of the role of Cl- in improving reversibility of TFSI-based electrolytes is obtained through the combination of R(R)DE experimental results and density functional theory (DFT) evaluation of the redox activity and thermodynamic stability of various TFSI- and Cl-based solution complexes of metal ions. The cooperative anion effect is further generalized to other mixed-anion systems, where systematic variations in anion association strength predicted from DFT (i.e., Cl- > OTf- ≈ TFSI- > BF4- > PF6-) yield corresponding trends in redox potentials and improvements of ≥200 mV in the reversibility of metal deposition/dissolution. These results identify anion association strength as a common descriptor for the reversibility of divalent metal anodes and suggest a set of general design principles for developing new electrolytes with improved activity and stability.

5.
Nat Mater ; 19(11): 1207-1214, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32690912

RESUMO

A remaining challenge for the deployment of proton-exchange membrane fuel cells is the limited durability of platinum (Pt) nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single-crystalline, thin-film and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt nanoparticles in a carbon (C) support. It was found that the utilization of a gold (Au) underlayer promotes ordering of Pt surface atoms towards a (111) structure, whereas Au on the surface selectively protects low-coordinated Pt sites. This mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles and resulted in the elimination of Pt dissolution in the liquid electrolyte, which included a 30-fold durability improvement versus 3 nm Pt/C over an extended potential range up to 1.2 V.

6.
Chem Sci ; 11(15): 3914-3922, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34122861

RESUMO

By combining idealized experiments with realistic quantum mechanical simulations of an interface, we investigate electro-reduction reactions of HF, water and methanesulfonic acid (MSA) on the single crystal (111) facets of Au, Pt, Ir and Cu in organic aprotic electrolytes, 1 M LiPF6 in EC/EMC 3:7W (LP57), the aprotic electrolyte commonly used in Li-ion batteries, 1 M LiClO4 in EC/EMC 3:7W and 0.2 M TBAPF6 in 3 : 7 EC/EMC. In our previous work, we have established that LiF formation, accompanied by H2 evolution, is caused by a reduction of HF impurities and requires the presence of Li at the interface, which catalyzes the HF dissociation. In the present paper, we find that the measured potential of the electrochemical response for these reduction reactions correlates with the work function of the electrode surfaces and that the work function determines the potential for Li+ adsorption. The reaction path is investigated further by electrochemical simulations suggesting that the overpotential of the reaction is related to stabilizing the active structure of the interface having adsorbed Li+. Li+ is needed to facilitate the dissociation of HF which is the source of protons. Further experiments on other proton sources, water and methanesulfonic acid, show that if the hydrogen evolution involves negatively charged intermediates, F- or HO-, a cation at the interface can stabilize them and facilitate the reaction kinetics. When the proton source is already significantly dissociated (in the case of a strong acid), there is no negatively charged intermediate and thus the hydrogen evolution can proceed at much lower overpotentials. This reveals a situation where the overpotential for electrocatalysis is related to stabilizing the active structure of the interface, facilitating the reaction rather than providing the reaction energy.

7.
ACS Appl Mater Interfaces ; 11(37): 34517-34525, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31430112

RESUMO

Engineered solid-liquid interfaces will play an important role in the development of future energy storage and conversion (ESC) devices. In the present study, defective graphene oxide (GO) and reduced graphene oxide (rGO) structures were used as engineered interfaces to tune the selectivity and activity of Pt disk electrodes. GO was deposited on Pt electrodes via the Langmuir-Blodgett technique, which provided compact and uniform GO films, and these films were subsequently converted to rGO by thermal reduction. Electrochemical measurements revealed that both GO and rGO interfaces on Pt electrodes exhibit selectivity toward the oxygen reduction reaction (ORR), but they do not have an impact on the activity of the hydrogen oxidation reaction in acidic environments. Scanning transmission electron microscopy at atomic resolution, along with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), revealed possible diffusion sites for H2 and O2 gas molecules and functional groups relevant to the selectivity and activity of these surfaces. Based on these insights, rGO interfaces are further demonstrated to exhibit enhanced activity for the ORR in nonaqueous environments and demonstrate the power of our ex situ engineering approach for the development of next-generation ESC devices.

8.
J Phys Chem Lett ; 9(17): 4935-4940, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30058338

RESUMO

The future of high-voltage rechargeable batteries is closely tied to the fundamental understanding of the processes that lead to the potential-dependent degradation of electrode materials and organic electrolytes. To date, however, there have been no methods able to provide quantitative, in situ and in real time information about the electrode dissolution kinetics and concomitant electrolyte decomposition during charge/discharge. We describe the development of such a method, which is of both fundamental and technological significance. Our novel approach enables simultaneous and independent measurements of transition-metal cation dissolution rates from different oxide hosts (Co3+/4+ or Cr3+/4+), deintercalation kinetics of working cations (Mg2+), and the relative rate of electrolyte decomposition.

9.
Nat Mater ; 16(1): 57-69, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27994237

RESUMO

Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

10.
Nat Mater ; 15(2): 197-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26618882

RESUMO

Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co(2+) and Mo(4+) centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.

11.
Angew Chem Int Ed Engl ; 53(51): 14016-21, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25297010

RESUMO

The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity of surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.

12.
J Phys Chem Lett ; 5(14): 2474-8, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26277818

RESUMO

In the present study, we used a surface-science approach to establish a functional link between activity and stability of monometallic oxides during the OER in acidic media. We found that the most active oxides (Au ≪ Pt < Ir < Ru ≪ Os) are, in fact, the least stable (Au ≫ Pt > Ir > Ru ≫ Os) materials. We suggest that the relationships between stability and activity are controlled by both the nobility of oxides as well as by the density of surface defects. This functionality is governed by the nature of metal cations and the potential transformation of a stable metal cation with a valence state of n = +4 to unstable metal cation with n > +4. A practical consequence of such a close relationship between activity and stability is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate is neither too fast nor too slow.

13.
Nat Chem ; 5(4): 300-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23511418

RESUMO

The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt0.1Ru0.9) with an optimal balance between the active sites that are required for the adsorption/dissociation of H2 and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.


Assuntos
Conservação de Recursos Energéticos , Fontes Geradoras de Energia , Hidrogênio/química , Radical Hidroxila/química , Adsorção , Catálise , Eletroquímica , Eletrodos , Ouro/química , Irídio/química , Oxirredução , Platina/química , Rutênio/química
14.
Nat Mater ; 11(12): 1051-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142838

RESUMO

Among the most challenging issues in technologies for electrochemical energy conversion are the insufficient activity of the catalysts for the oxygen reduction reaction, catalyst degradation and carbon-support corrosion. In an effort to address these barriers, we aimed towards carbon-free multi/bimetallic materials in the form of mesostructured thin films with tailored physical properties. We present here a new class of metallic materials with tunable near-surface composition, morphology and structure that have led to greatly improved affinity for the electrochemical reduction of oxygen. The level of activity for the oxygen reduction reaction established on mesostructured thin-film catalysts exceeds the highest value reported for bulk polycrystalline Pt bimetallic alloys, and is 20-fold more active than the present state-of-the-art Pt/C nanoscale catalyst.

15.
Nat Mater ; 11(6): 550-7, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22561903

RESUMO

Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M(2+δ) bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH-M(2+δ) energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of 'active sites' for practical alkaline HER and OER electrocatalysts.

17.
Science ; 334(6060): 1256-60, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22144621

RESUMO

Improving the sluggish kinetics for the electrochemical reduction of water to molecular hydrogen in alkaline environments is one key to reducing the high overpotentials and associated energy losses in water-alkali and chlor-alkali electrolyzers. We found that a controlled arrangement of nanometer-scale Ni(OH)(2) clusters on platinum electrode surfaces manifests a factor of 8 activity increase in catalyzing the hydrogen evolution reaction relative to state-of-the-art metal and metal-oxide catalysts. In a bifunctional effect, the edges of the Ni(OH)(2) clusters promoted the dissociation of water and the production of hydrogen intermediates that then adsorbed on the nearby Pt surfaces and recombined into molecular hydrogen. The generation of these hydrogen intermediates could be further enhanced via Li(+)-induced destabilization of the HO-H bond, resulting in a factor of 10 total increase in activity.

18.
J Am Chem Soc ; 133(36): 14396-403, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21770417

RESUMO

Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

20.
Nano Lett ; 11(3): 919-26, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20704335

RESUMO

We report the design and synthesis of multimetallic Au/Pt-bimetallic nanoparticles as a highly durable electrocatalyst for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. This system was first studied on well-defined Pt and FePt thin films deposited on a Au(111) surface, which has guided the development of novel synthetic routes toward shape-controlled Au nanoparticles coated with a Pt-bimetallic alloy. It has been demonstrated that these multimetallic Au/FePt(3) nanoparticles possess both the high catalytic activity of Pt-bimetallic alloys and the superior durability of the tailored morphology and composition profile, with mass-activity enhancement of more than 1 order of magnitude over Pt catalysts. The reported synergy between well-defined surfaces and nanoparticle synthesis offers a persuasive approach toward advanced functional nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...