Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(40): 16329-16342, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756217

RESUMO

We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.

2.
J Org Chem ; 77(18): 7793-803, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22917488

RESUMO

The Cu(I)-catalyzed reaction of 1-bromo-2-iodobenzenes and other 1,2-dihalobenzenes with 1,3-cyclohexanediones in DMF at 130 °C using Cs(2)CO(3) as a base and pivalic acid as an additive selectively delivers 3,4-dihydrodibenzo[b,d]furan-1(2H)-ones with yields ranging from 47 to 83%. The highly regioselective domino process is based on an intermolecular Ullmann-type C-arylation followed by an intramolecular Ullmann-type O-arylation. Substituted products are accessible by employing substituted 1-bromo-2-iodobenzenes and substituted 1,3-cyclohexanediones as substrates. Reaction with an acyclic 1,3-diketone yields the corresponding benzo[b]furan.


Assuntos
Benzofuranos/química , Benzofuranos/síntese química , Cobre/química , Cicloexanos/química , Hidrocarbonetos Halogenados/química , Iodobenzenos/química , Cetonas/química , Catálise , Estrutura Molecular , Estereoisomerismo
3.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 5): i35, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22590054

RESUMO

Single crystals of garnet-type trimanganese(II) dichrom-i-um(III) tris-[orthogermanate(IV)], Mn(II) (3)Cr(III) (2)(GeO(4))(3), were obtained by utilizing a chemical transport reaction. Corres-ponding to the mineral garnet with the general formula A(II) (3)B(III) (2)(SiO(4))(3), each of the four elements occupies only one crystallographically distinct position. Mn(2+) occupies the respective A position (Wyckoff site 24c, site symmetry 2.22), being surrounded by eight O atoms that form a distorted cube [d(Mn-O) = 2.291 (2) and 2.422 (2) Å, 4× each], while Cr(3+) on the B position (Wyckoff site 16a, site symmetry .-3.) is situated in a slightly distorted octa-hedron of six O(2-) anions [d(Cr-O) = 1.972 (2) Å, 6×]. In addition, the O atoms on general site 96h form isolated [GeO(4)](4-) tetra-hedra with Ge(4+) on site 24d [site symmetry -4..; d(Ge-O) = 1.744 (2) Å, 4×].

4.
J Org Chem ; 74(19): 7230-7, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19739645

RESUMO

The laccase-catalyzed reaction between catechols and heterocyclic 1,3-dicarbonyls (pyridinones, quinolinones, thiocoumarins) using aerial oxygen as the oxidant delivers benzofuropyridinones, benzofuroquinolinones, and thiocoumestans in a simple fashion, highly regioselectively with yields ranging from 55 to 98%. With barbituric acid derivatives the exclusive formation of dispiropyrimidinone derivatives takes place. The unambiguous and complete structure elucidation of all reaction products has been achieved by means of NMR spectroscopic methods (HSQMBC and band-selective HMBC) as well as by X-ray crystal structure analysis.


Assuntos
Barbitúricos/química , Catecóis/química , Cumarínicos/química , Lacase/metabolismo , Piridonas/química , Quinolonas/química , Agaricus/enzimologia , Barbitúricos/síntese química , Catálise , Cristalografia por Raios X , Compostos Heterocíclicos/química , Lacase/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química
5.
J Am Chem Soc ; 131(25): 8895-902, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19505079

RESUMO

Combining the concepts of noninnocent behavior of metal/ligand entities and the coupling of redox-active moieties via an electronically mediating bridge led to the synthesis and the structural, electrochemical, and spectroscopic characterization of [Cl(Q)Ru(mu-tppz)Ru(Q)Cl](n) where Q(o) is 4,6-di-tert-butyl-N-phenyl-o-iminobenzoquinone and tppz(o) is 2,3,5,6-tetrakis(2-pyridyl)pyrazine, the available oxidation states being Ru(II,III,IV), Q(o,*-,2-), and tppz(o,*-,2-). One-electron transfer steps between the n = (2-) and (4+) states were studied by cyclic voltammetry and by EPR, UV-vis-NIR spectroelectrochemistry for the structurally characterized anti isomer of [Cl(Q)Ru(mu-tppz)Ru(Q)Cl](PF(6))(2), 2(PF(6))(2), the only configuration obtained. The combined investigations reveal that 2(2+) is best described as [Cl(Q(*-))Ru(III)(mu-tppz(o))Ru(III)(Q(*-))Cl](2+) with antiferromagnetic coupling between the ruthenium(III) and the iminosemiquinone components at each end. A metal-based spin as evident from large g factor anisotropy (EPR) and an intense intervalence absorption band at 1850 nm in the near-infrared (NIR) suggest that oxidation occurs at both iminosemiquinones to yield two Ru(II,III)-bonded quinones, implying redox-induced electron transfer. Reduction takes place stepwise at the metal centers yielding iminosemiquinone complexes of Ru(III,II) as evident from radical complex EPR spectra with small (99,101)Ru hyperfine contributions. After complete metal reduction to ruthenium(II) the bridging ligand tppz is being reduced stepwise as apparent from typical NIR absorption bands around 1000 nm and from small g anisotropy of the monoanion [Cl(Q(*-))Ru(II)(mu-tppz(*-))Ru(II)(Q(*-))Cl](-). A structure-based DFT calculation confirms the Ru-Cl character of the HOMO and the iminoquinone-dominated LUMO and illustrates the orbital interaction pattern of the five electron transfer active components in this new system.

6.
Angew Chem Int Ed Engl ; 48(23): 4242-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19431179

RESUMO

Six combinations of oxidation states are conceivable for the paramagnetic title complex. Single-crystal X-ray diffraction, spectroscopic analysis (IR, EPR at conventional and high frequency), and DFT calculations establish that it is the iminosemiquinone radical structure that is formed: [Ru(k)(NO(m))(Q(n))(terpy)](2+) (k = 2+, m = 1+, n = 1-).

7.
Dalton Trans ; (42): 9291-7, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449208

RESUMO

The new ligands, 1-(4-isopropyl phenyl)-4-(2-pyridyl)-1,2,3-triazole, 1 and 1-(mesityl)-4-(2-pyridyl)-1,2,3-triazole, 2 were prepared by the reactions of the respective azides with 2-ethynylpyridine following the "click method". These ligands together with the reported ligands 1-(phenyl)-4-(2-pyridyl)-1,2,3-triazole, 3 and 1-(benzyl)-4-(2-pyridyl)-1,2,3-triazole, 4 were reacted with palladium and platinum precursors to give mononuclear cis-dichloropalladium and platinum complexes containing the triazole ligands. Structural characterisation of the free ligand 3 shows that the central N-N bond in the triazole ring has double bond character and hence is best described as an "azo-like" N-N double bond. The pyridine ring in 3 has an almost "anti" conformation with respect to the central triazole ring. The metal centers bind to the ligands through the pyridine N and a triazole N atom. The metal-N(triazole) distances are shorter than the metal-N(pyridine) distances. Cyclic voltammograms of the ligands show reduction processes that appear at extreme negative potentials. Coordination of metal centers induces huge anodic shifts of the reduction potentials due to sigma-polarisation by the metal centers. UV/Vis spectra of the ligands and complexes are also discussed. The properties of such chelating triazole ligands towards palladium and platinum centers is being compared and contrasted to the widely used 2,2'-bipyridine ligand.

8.
Inorg Chem ; 47(11): 4936-44, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-18459766

RESUMO

The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.

9.
Inorg Chem ; 47(9): 3728-35, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18386887

RESUMO

The halide derivatives of yttrium ortho-oxomolybdate YX[MoO 4] (X = F, Cl) both crystallize in the monoclinic system with four formula units per unit cell. YF[MoO 4] exhibits a primitive cell setting (space group P21/ c; a = 519.62(2) pm, b = 1225.14(7) pm, c = 663.30(3) pm, beta = 112.851(4) degrees ), whereas the lattice of YCl[MoO 4] shows face-centering (space group C2/m; a = 1019.02(5) pm, b = 720.67(4) pm, c = 681.50(3) pm, beta = 107.130(4) degrees ). The two compounds each contain crystallographically unique Y (3+) cations, which are found to have a coordination environment of six oxide and two halide anions. In the case of YF[MoO 4], the coordination environment is seen as square antiprisms, and for YCl[MoO 4], trigon-dodecahedra are found. The discrete tetrahedral [MoO 4] (2-) units of the fluoride derivative are exclusively bound by six terminal Y (3+) cations, while those of the chloride compound show a 5-fold coordination around the tetrahedra with one edge-bridging and four terminal Y (3+) cations. The halide anions in each compound exhibit a coordination number of two, building up isolated planar rhombus-shaped units according to [Y 2F 2] (4+) in YF[MoO 4] and [Y 2Cl 2] (4+) in YCl[MoO 4], respectively. Both compounds were synthesized at high temperatures using Y2O3, MoO3, and the corresponding yttrium trihalide in a molar ratio of 1:3:1. Single crystals of both are insensitive to moist air and are found to be coarse shaped and colorless with optical band gaps situated in the near UV around 3.78 eV for the fluoride and 3.82 eV for the chloride derivative. Furthermore, YF[MoO 4] seems to be a suitable material for doping to obtain luminescent materials because the Eu (3+)-doped compound shows an intense red luminescence, which has been spectroscopically investigated.

10.
Inorg Chem ; 46(6): 2017-27, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-17302403

RESUMO

A new family of Ag-substituted pseudoquaternary alkali-seleno-germanates has been synthesized by two solid-state routes: the conventional flux method and metathesis. This family includes a series of semiconductors with varying amounts of Ag+ substituted for Na+ in Na8Ge4Se10 to form AgxNa(8-x)Ge4Se10, [x = 0.31 (I), 0.67 (II), 0.77 (III), 0.87 (IV), 1.05 (V), 1.09 (VI)] and another phase with a different composition AgxNa(6-x)Ge2Se7 (x = 1.76), VII, related to Na6Ge2Se7. In I-VI, Ge4Se10(8-) constitutes a 6-membered chairlike unit with a Ge-Ge bond, while in VII, a corner-shared dimer of GeSe4 tetrahedra (Ge2Se76-) acts as the building unit. The single-crystal structure analysis indicates that there is a phase transition from P to C2/c, in changing from pure Na8Ge4Se10 to AgxNa(8-x)Ge4 Se10 (I-VI), while there is no phase transition between pure Na6Ge2Se7 and AgxNa(6-x)Ge2Se7 (x = 1.76). The structures of I-VI may be described in terms of layers of cubic close-packed Se2- anions. In between the Se layers, octahedral holes fully occupied by Na+ and mixed Ag+/Na+ cations alternate with layers formed of octahedral holes fully occupied by Na+ and Ge26+ cations. Two adjacent Ge26+ cations form a chairlike Ge4Se10(8-) anion in which Ge-Ge bonds are oriented almost parallel to the Se layers. In contrast, VII does not have close-packed anions. Corner-shared GeSe4 tetrahedra (Ge2Se7(6-) dimer) and AgSe4 tetrahedra form layers that are cross-linked by Na/AgSe4 tetrahedra to form a 3-dimensional (3-D) structure. An optical property investigation indicates a red shift in the band gap of AgxNa(8-x)Ge4Se10 (x = 0.67)(II) as compared to that of pure Na8Ge4Se10. Raman data also indicate a red shift of the Ge-Se stretching mode in the Ag+-substituted phase II (x = 0.67) compared to that of Na8Ge4Se10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...