Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(12): 6322-6344, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38726664

RESUMO

Triazole-derived N-heterocyclic carbenes, triazolylidenes (trz) have become an interesting alternative to the ubiquitous Arduengo-type imidazole-derived carbenes, in part because they are stronger donors, and in other parts due to their versatile synthesis through different types of click reactions. While the use of trz ligands has initially focused on their coordination to precious metals for catalytic applications, the recent past has seen a growing interest in their impact on first-row transition metals. Coordination of trz ligands to such 3d metals is more challenging due to the orbital mismatch between the carbene and the 3d metal center, which also affects the stability of such complexes. Here we summarize the strategies that have been employed so far to overcome these challenges and to prepare first-row transition metal complexes containing at least one trz ligand. Both properties and reactivities of these trz complexes are comprehensively compiled, with a focus on photophysical properties and, in particular, on the application of these complexes in homogeneous catalysis. The diversity of catalytic transformations entailed with these trz 3d metal complexes as well as the record-high performance in some of the reactions underpins the benefits imparted by trz ligands.

2.
Chimia (Aarau) ; 78(4): 205-208, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676610

RESUMO

N-heterocycles are key building blocks for many pharmaceutical products. An efficient and sustainable method for the synthesis of this class of compounds consists of the recently established intramolecular C-H amination reaction. Development of new iron-based catalysts for this transformation is of paramount importance. Herein, three major challenges in this field are addressed: the accessibility of the catalyst, the lack of mechanisticunderstanding, and the limited activity and robustness of the catalyst. These challenges are tackled by threedifferent catalysts. The first catalyst is the commercially available FeI2, that shows good activities, but is limitedto substrates with activated C-H bonds. The Fe(HMDS)2 catalyst is used to perfom in-depth mechanistic studies, revealing key intermediates of the C-H amination reaction. The third catalyst, featuring mesoionic carbene ligands, displays unprecedented activities and aminates various C-H bonds.

3.
Chemistry ; 30(4): e202303410, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916523

RESUMO

Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.

4.
Chem Sci ; 14(11): 2849-2859, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937598

RESUMO

Formation of ubiquitous C-N bonds traditionally uses prefunctionalized carbon precursors. Recently, metal-catalyzed amination of unfunctionalized C-H bonds with azides has become an attractive and atom-economic strategy for C-N bond formation, though all catalysts contain sophisticated ligands. Here, we report Fe(HMDS)2 (HMDS = N(SiMe3)2 -) as an easy-to-prepare catalyst for intramolecular C-H amination. The catalyst shows unprecedented turnover frequencies (110 h-1 vs. 70 h-1 reported to date) and requires no additives. Amination is successful for benzylic and aliphatic C-H bonds (>80% yield) and occurs even at room temperature. The simplicity of the catalyst enabled for the first time comprehensive mechanistic investigations. Kinetic, stoichiometric, and computational studies unveiled the intimate steps of the C-H amination process, including the resting state of the catalyst and turnover-limiting N2 loss of the coordinated azide. The high reactivity of the iron imido intermediate is rationalized by its complex spin system revealing imidyl and nitrene character.

5.
Catal Sci Technol ; 13(4): 958-962, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36825222

RESUMO

Commercially available iron salts FeX2 are remarkably active catalysts for pyrrolidine formation from organic azides via direct C-H bond amination. With FeI2, amination is fast and selective, (<30 min for 80% yield at 2 mol% loading), TONs up to 370 are reached with just 0.1 mol% catalyst, different functional groups are tolerated, and a variety of C-H bonds were activated.

6.
J Am Chem Soc ; 143(48): 20157-20165, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841864

RESUMO

The synthesis of N-heterocycles is of paramount importance for the pharmaceutical industry. They are often synthesized through atom economic and environmentally unfriendly methods, generating significant waste. A less explored, but greener, alternative is the synthesis through the direct intramolecular C-H amination utilizing organic azides. Few examples exist by using this method, but many are limited due to the required use of stoichiometric amounts of Boc2O. Herein, we report a homoleptic C,O-chelating mesoionic carbene-iron complex, which is the first iron-based complex that does not require the addition of any protecting groups for this transformation and that is active also in strong donor solvents such as THF or even DMSO. The achieved turnover number is an order of magnitude higher than any other reported catalytic system. A variety of C-H bonds were activated, including benzylic, primary, secondary, and tertiary. By following the reaction over time, we determined the presence of an initiation period. Kinetic studies showed a first-order dependence on substrate concentration and half-order dependence on catalyst concentration. Intermolecular competition reactions with deuterated substrate showed no KIE, while separate reactions with deuterium-labeled substrate resulted in a KIE of 2.0. Moreover, utilizing deuterated substrate significantly decreased the initiation period of the catalysis. Preliminary mechanistic studies suggest a unique mechanism involving a dimeric iron species as the catalyst resting state.

7.
Chem Commun (Camb) ; 57(57): 7015-7018, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34165132

RESUMO

Long-range structures and dynamics are central to coordination chemistry, yet are hard to identify experimentally. By combining polarized low-frequency Raman spectroscopy with single crystal XRD to study barium nitrilotriacetate, a metal-organic coordination polymer and a useful pyrolysis precursor, we could assign Raman peaks experimentally to layer shear motions and perpendicular hydrogen bond vibrations. These directional long-range interactions further determined the preferred fracture directions during crystallization, establishing an important link between structural motifs in the precursor, and the porosity of the carbon it yields upon pyrolysis.

8.
Inorg Chem ; 59(17): 12903-12912, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32815718

RESUMO

The influence of a redox-active ligand on spin-changing events induced by the coordination of exogenous donors is investigated within the cobalt complex [CoII(DPP·2-)], bearing a redox-active DPP2- ligand (DPP = dipyrrin-bis(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square-planar complex was subjected to the coordination of tetrahydrofuran (THF), pyridine, tBuNH2, and AdNH2 (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (X-ray diffraction, NMR, UV-visible, high-resolution mass spectrometry, superconducting quantum interference device, Evans' method) and computational (density functional theory, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states, and orbital compositions of the corresponding octahedral bis-donor adducts, relative to [CoII(DPP·2-)]. This starting species is best described as an open-shell singlet complex containing a DPP·2- ligand radical that is antiferromagnetically coupled to a low-spin (S = 1/2) cobalt(II) center. The redox-active DPPn- ligand plays a crucial role in stabilizing this complex and in its facile conversion to the triplet THF adduct [CoII(DPP·2-)(THF)2] and closed-shell singlet pyridine and amine adducts [CoIII(DPP3-)(L)2] (L = py, tBuNH2, or AdNH2). Coordination of the weak donor THF to [CoII(DPP·2-)] changes the orbital overlap between the DPP·2- ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP·2- ligand. In contrast, coordination of the stronger donors pyridine, tBuNH2, or AdNH2 induces metal-to-ligand single-electron transfer, resulting in the formation of low-spin (S = 0) cobalt(III) complexes [CoIII(DPP3-)(L)2] containing a fully reduced DPP3- ligand, thus explaining their closed-shell singlet electronic ground states.

9.
Eur J Inorg Chem ; 2018(11): 1254-1265, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29937690

RESUMO

We report the coordination chemistry of indole based tripodal tetraphosphine ligands to iron(II), cobalt(II) and nickel(II). These complexes are formed by simple synthetic protocols and were characterized by a combination of spectroscopic techniques and single-crystal X-ray analysis. The molecular structures as determined by X-ray diffraction show that the geometry of the nickel and cobalt complexes are distorted trigonal bipyramidal. The monocationic iron(II) complexes also have distorted trigonal bipyramidal geometries, but the dicationic analogue has an octahedral geometry. Two-electron reduction of the cobalt(+II) and the nickel(+II) complexes in the presence of N2 did not lead to the coordination of N2. In contrast, two-electron reduction of the iron(+II) complexes did lead to coordination of dinitrogen to the iron center. The Fe0N2L1H complex has a trigonal bipyramidal geometry, and the N-N bond length of the coordinated dinitrogen ligand is longer than that of free dinitrogen, indicating that coordination to this iron(0) complex results in activation of the N≡N bond.

10.
Phys Chem Chem Phys ; 18(30): 20778-83, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27412725

RESUMO

Controlled mixtures of novel Mg-based metal-organic frameworks (MOFs) were prepared, with H(+) or K(+) as counterions. A linear relation was found between synthesis pH and K/H ratio in the resultant mixture, establishing the tunability of the synthesis. Upon pyrolysis, these precursor mixtures yield nitrogen-doped, hierarchically porous carbons, which have good activity towards the oxygen reduction reaction (ORR) at pH 13. The nitrogen content varies significantly along the homologous carbon series (>400%, 1.3 at% to 5.7 at%), to a much greater extent than microstructural parameters such as surface area and graphitization. This allows us to isolate the positive correlation between nitrogen content and electrocatalytic oxygen reduction ORR activity in this class of metal-free, N-doped, porous carbons.

11.
Chemistry ; 22(2): 501-5, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26574917

RESUMO

Replacing platinum as an oxygen reduction catalyst is an important scientific and technological challenge. Herein we report a simple synthesis of a complex carbon with very good oxygen reduction reaction (ORR) activity at pH 13. Pyrolysis of magnesium nitrilotriacetate yields a carbon with hierarchical micro/meso/macro porosity, resulting from in situ templating by spontaneously forming MgO nanoparticles and from etching by pyrolysis gases. The mesopores are lined with highly graphitic shells. The high ORR activity is attributed to a good balance between high specific surface area and mass transport through the hierarchical porosity, and to improved electronic conductivity through the graphitic shells. This novel carbon has a high surface area (1320 m(2) g(-1) ), and high nitrogen content for a single precursor synthesis (∼6 %). Importantly, its synthesis is both cheap and easily scalable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...