Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979318

RESUMO

Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559271

RESUMO

Background: The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective: Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods: In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results: Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions: These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.

3.
Pain ; 165(7): 1625-1641, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314779

RESUMO

ABSTRACT: The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.


Assuntos
Eletroencefalografia , Frequência Cardíaca , Dor , Humanos , Masculino , Frequência Cardíaca/fisiologia , Feminino , Adulto , Adulto Jovem , Dor/fisiopatologia , Medição da Dor/métodos , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Córtex Insular/fisiologia , Eletrocardiografia , Percepção da Dor/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Temperatura Alta
4.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38182418

RESUMO

The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.


Assuntos
Dor Aguda , Giro do Cíngulo , Humanos , Giro do Cíngulo/diagnóstico por imagem , Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Percepção da Dor
5.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205396

RESUMO

The insula is a portion of the cerebral cortex folded deep within the lateral sulcus covered by the overlying opercula of the inferior frontal lobe and superior portion of the temporal lobe. The insula has been parsed into sub-regions based upon cytoarchitectonics and structural and functional connectivity with multiple lines of evidence supporting specific roles for each of these sub-regions in pain processing and interoception. In the past, causal interrogation of the insula was only possible in patients with surgically implanted electrodes. Here, we leverage the high spatial resolution combined with the deep penetration depth of low-intensity focused ultrasound (LIFU) to non-surgically modulate either the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact head evoked potentials (CHEPs) and time-frequency power as well as autonomic measures including heart-rate variability (HRV) and electrodermal response (EDR). N = 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, EDR and EEG recording. LIFU was delivered to either the AI (anterior short gyrus), PI (posterior longus gyrus) or under an inert sham condition time-locked to the heat stimulus. Results demonstrate that single-element 500 kHz LIFU is capable of individually targeting specific gyri of the insula. LIFU to both AI and PI similarly reduced perceived pain ratings but had differential effects on EEG activity. LIFU to PI affected earlier EEG amplitudes around 300 milliseconds whereas LIFU to AI affected EEG amplitudes around 500 milliseconds. In addition, only LIFU to the AI affected HRV as indexed by an increase in standard deviation of N-N intervals (SDNN) and mean HRV low frequency power. There was no effect of LIFU to either AI or PI on EDR or blood pressure. Taken together, LIFU looks to be an effective method to individually target sub-regions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus. These data have implications for the treatment of chronic pain and several neuropsychological diseases like anxiety, depression and addiction that all demonstrate abnormal activity in the insula concomitant with dysregulated autonomic function.

6.
Ultrasound Med Biol ; 49(6): 1422-1430, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889994

RESUMO

OBJECTIVE: Single-element low-intensity focused ultrasound (LIFU) is an emerging form of human neuromodulation. Current coupling methods are impractical for clinical bedside use. Here, we evaluate commercially available high-viscosity gel polymer matrices as couplants for human LIFU neuromodulation applications. METHODS: We first empirically tested the acoustic transmission of three densities at 500 kHz and then subjected the gel with the least acoustic attenuation to further tests of the effect of thickness, frequency, de-gassing and production variability. RESULTS: The highest-density gel had the lowest acoustic attenuation (3.3%) with low lateral (<0.5 mm) and axial (<2 mm) beam distortion. Different thicknesses of the gel up to 10 mm did not appreciably affect results. The gel polymers exhibited frequency-dependent attenuation at 1 and 3 MHz up to 86.6%, as well as significant beam distortion >4 mm. Poor de-gassing methods also increased pressure attenuation at 500 kHz up to 59.6%. Standardized methods of making these gels should be established to reduce variability. CONCLUSION: Commercially available de-gassed, high-density gel matrices are a low-cost, easily malleable, low-attenuation and distortion medium for the coupling of single-element LIFU transducers for human neuromodulation applications at 500 kHz.


Assuntos
Géis , Ondas Ultrassônicas , Neurotransmissores , Humanos , Estimulação Magnética Transcraniana
7.
Rare Tumors ; 14: 20363613221112432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836750

RESUMO

Cortical ependymomas are currently not considered a subgroup of supratentorial ependymomas; however, there is a growing body of literature investigating the natural history of these lesions compared to supratentorial ependymomas. We performed a systematic literature review of cortical ependymomas with a focus on the natural history, clinical characteristics, and clinical outcomes of these lesions as compared to supratentorial ependymomas. Our search revealed 153 unique cases of cortical ependymomas. The mean age on presentation was 21.2 years. Males and females comprised 58.8% (90/153) and 41.2% (63/153) of cases, respectively. The most common presenting symptom was seizure activity occurring in 44.4% of the cohort (68/153). The recently recognized C11orf95-RELA fusion was identified in 13.7% of the cohort (21/153) and 95.5% of cases (21/22) reporting molecular characterization. World Health Organization grades 2 and 3 were reported in 52.3% (79/151) and 47.7% (72/151) of cases, respectively. The frontal lobe was involved in the majority of cases (54.9%, 84/153). Gross total resection was achieved in 80.4% of cases (123/153). Tumor recurrence was identified in 27.7% of cases (39/141). Mean clinical follow-up was 41.3 months. Mean overall survival of patients who expired was 27.4 months whereas mean progression-free survival was 15.0 months. Comparatively, cortical ependymomas with C11orf95-RELA fusions and supratentorial ependymomas with C11orf95 RELA fusions exhibited differing clinical outcomes. Further studies with larger sample sizes are necessary to investigate the significance of RELA fusions on survival in cortical ependymomas and to determine whether cortical ependymomas with C11orf95-RELA fusions should be classified as a distinct entity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...