Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581112

RESUMO

The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF's precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein-protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA's enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a-DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.


Assuntos
Peptídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
2.
J Mol Cell Cardiol ; 138: 59-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751570

RESUMO

There is increasing momentum toward the development of gene therapy for heart failure (HF) that is defined by impaired calcium (Ca2+) transport and reduced contractility. We have used FRET (fluorescence resonance energy transfer) between fluorescently-tagged SERCA2a (the cardiac Ca2+ pump) and PLB (phospholamban, ventricular peptide inhibitor of SERCA) to test directly the effectiveness of loss-of-inhibition/gain-of-binding (LOI/GOB) PLB mutants (PLBM) that were engineered to compete with the binding of inhibitory wild-type PLB (PLBWT). Our therapeutic strategy is to relieve PLBWT inhibition of SERCA2a by using the reserve adrenergic capacity mediated by PLB to enhance cardiac contractility. Using a FRET assay, we determined that the combination of a LOI PLB mutation (L31A) and a GOB PLB mutation (I40A) results in a novel engineered LOI/GOB PLBM (L31A/I40A) that effectively competes with PLBWT binding to cardiac SERCA2a in HEK293-6E cells. We demonstrated that co-expression of PLBM enhances SERCA Ca-ATPase activity by increasing enzyme Ca2+ affinity (1/KCa) in PLBWT-inhibited HEK293 cell homogenates. For an initial assessment of PLBM physiological effectiveness, we used human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) from a healthy individual. In this system, we observed that adeno-associated virus 2 (rAAV2)-driven expression of PLBM enhances the amplitude of SR Ca2+ release and the rate of SR Ca2+ re-uptake. To assess therapeutic potential, we used a hiPSC-CM model of dilated cardiomyopathy (DCM) containing PLB mutation R14del, where we observed that rAAV2-driven expression of PLBM rescues arrhythmic Ca2+ transients and alleviates decreased Ca2+ transport. Thus, we propose that PLBM transgene expression is a promising gene therapy strategy that directly targets the underlying pathophysiology of abnormal Ca2+ transport and thus contractility in underlying systolic heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ligação Competitiva , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função/genética , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
3.
Sci Rep ; 8(1): 12560, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135432

RESUMO

We have developed a structure-based high-throughput screening (HTS) method, using time-resolved fluorescence resonance energy transfer (TR-FRET) that is sensitive to protein-protein interactions in living cells. The membrane protein complex between the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) and phospholamban (PLB), its Ca-dependent regulator, is a validated therapeutic target for reversing cardiac contractile dysfunction caused by aberrant calcium handling. However, efforts to develop compounds with SERCA2a-PLB specificity have yet to yield an effective drug. We co-expressed GFP-SERCA2a (donor) in the endoplasmic reticulum membrane of HEK293 cells with RFP-PLB (acceptor), and measured FRET using a fluorescence lifetime microplate reader. We screened a small-molecule library and identified 21 compounds (Hits) that changed FRET by >3SD. 10 of these Hits reproducibly alter SERCA2a-PLB structure and function. One compound increases SERCA2a calcium affinity in cardiac membranes but not in skeletal, suggesting that the compound is acting specifically on the SERCA2a-PLB complex, as needed for a drug to mitigate deficient calcium transport in heart failure. The excellent assay quality and correlation between structural and functional assays validate this method for large-scale HTS campaigns. This approach offers a powerful pathway to drug discovery for a wide range of protein-protein interaction targets that were previously considered "undruggable".


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Técnicas Biossensoriais , Proteínas de Ligação ao Cálcio/química , Sobrevivência Celular , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
4.
J Mol Cell Cardiol ; 119: 147-154, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752948

RESUMO

Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted ß-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to ß-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcriptoma , Agonistas Adrenérgicos beta/metabolismo , Análise de Variância , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Crescimento Celular , Linhagem Celular , Tamanho Celular , Fibrose , Edição de Genes , Humanos , MicroRNAs/metabolismo , Mutação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Engenharia Tecidual , Transfecção
5.
Mol Cell Biol ; 34(21): 3939-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25135477

RESUMO

Fanconi anemia (FA) is a cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand cross-links (ICLs). Within the FA pathway, an upstream core complex monoubiquitinates and recruits the FANCD2 protein to ICLs on chromatin. Ensuing DNA repair involves the Fanconi-associated nuclease 1 (FAN1), which interacts selectively with monoubiquitinated FANCD2 (FANCD2(Ub)) at ICLs. Importantly, FANCD2 has additional independent functions: it binds chromatin and coordinates the restart of aphidicolin (APH)-stalled replication forks in concert with the BLM helicase, while protecting forks from nucleolytic degradation by MRE11. We identified FAN1 as a new crucial replication fork recovery factor. FAN1 joins the BLM-FANCD2 complex following APH-mediated fork stalling in a manner dependent on MRE11 and FANCD2, followed by FAN1 nuclease-mediated fork restart. Surprisingly, APH-induced activation and chromatin recruitment of FAN1 occur independently of the FA core complex or the FAN1 UBZ domain, indicating that the FANCD2(Ub) isoform is dispensable for functional FANCD2-FAN1 cross talk during stalled fork recovery. In the absence of FANCD2, MRE11 exonuclease-promoted access of FAN1 to stalled forks results in severe FAN1-mediated nucleolytic degradation of nascent DNA strands. Thus, FAN1 nuclease activity at stalled replication forks requires tight regulation: too little inhibits fork restart, whereas too much causes fork degradation.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , RecQ Helicases/metabolismo , Afidicolina/farmacologia , Domínio Catalítico , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Regulação da Expressão Gênica , Humanos , Proteína Homóloga a MRE11 , Enzimas Multifuncionais , Ubiquitinação
6.
Environ Sci Technol ; 43(8): 2818-24, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19475956

RESUMO

Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions.


Assuntos
Aerossóis/química , Aminoácidos/química , Glioxal/química , Compostos Orgânicos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...