Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 64(3): 351-61, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430006

RESUMO

It is widely appreciated that eukaryotic marine phytoplankton can hydrolyze a variety of compounds within the dissolved organic matter (DOM) pool in marine environments. Herein, cultures and field populations of marine phytoplankton were assayed for beta-N-acetylglucosaminidase activity, a terminal enzyme of chitin degradation. A traditional bulk assay, which can assess hydrolytic rate, but is not cell-specific, was complemented with a cell-specific assay that images the activity associated with single cells using an enzyme labeled fluorescence (ELF) substrate. beta-N-acetylglucosaminidase activity was widespread across various taxa of marine phytoplankton, and activity was observed both under controlled culture conditions and in field populations. The number of cells with enzyme activity varied with the nutritional physiology of the test species in three of the 17 cultures tested. In these three cases the number of cells with activity in the low nutrient medium was higher than in nutrient replete medium. Taken together, these data suggest that a broad group of marine phytoplankton may be a relevant part of chitin-like DOM degradation and should be incorporated into conceptual models of chitin cycling in marine systems.


Assuntos
Acetilglucosaminidase/metabolismo , Fitoplâncton/enzimologia , Quitina/metabolismo , Corantes Fluorescentes/metabolismo , Microscopia de Fluorescência , Compostos Orgânicos/metabolismo , Fitoplâncton/citologia , Microbiologia da Água
2.
Environ Microbiol ; 5(6): 462-72, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755713

RESUMO

ELF(R)97 phosphate (ELFP) is a phosphatase substrate which produces ELF(R)97 alcohol (ELFA), a fluorescent water-insoluble product, upon hydrolysis. We studied the kinetics of ELFA precipitation in freshwater samples at levels of total plankton and single phytoplankton cells, and tested the suitability of ELFP for measurement of surface-bound algal extracellular phosphatases. Samples from acidic Plesné Lake (pH approximately 5; high phosphatase activity) and eutrophic Rímov reservoir (pH approximately 7-10; moderate phosphatase activity) were incubated with ELFP for 5-300 min, fixed with HgCl2 and filtered through polycarbonate filters. Relative fluorescence of filter-retained ELFA precipitates was quantified with image analysis. Time-courses of ELFA formation exhibited lag periods followed by finite periods of linear increase. In Plesné Lake, lag-times were shorter (1-18 min) and rates of increase in ELFA fluorescence higher (by approximately 2 orders of magnitude) than in Rímov reservoir (lag-times 30-200 min). Similar patterns of ELFA formation kinetics were also observed in Plesné Lake samples in cuvette spectrofluorometer measurements (which failed in Rímov reservoir). Linear regression of seasonal data on rates of increase in ELFA fluorescence from image cytometry and spectrofluorometry (r2 = 0.65, n = 10) allowed for calibration of image cytometry in terms of amount of cell-associated ELFA. Preliminary measurements of extracellular phosphatase activities of several algae resulted in rates (10-2260 fmol cell-1 h-1) which are comparable to data reported in the literature for algal cultures.


Assuntos
Corantes Fluorescentes/metabolismo , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fitoplâncton/enzimologia , Plâncton/enzimologia , Quinazolinas/metabolismo , República Tcheca , Água Doce , Processamento de Imagem Assistida por Computador , Quinazolinonas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...