Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Assoc Res Otolaryngol ; 21(6): 527-544, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33104927

RESUMO

Cochlear implant (CI) users have more difficulty understanding speech in temporally modulated noise than in steady-state (SS) noise. This is thought to be caused by the limited low-frequency information that CIs provide, as well as by the envelope coding in CIs that discards the temporal fine structure (TFS). Contralateral amplification with a hearing aid, referred to as bimodal hearing, can potentially provide CI users with TFS cues to complement the envelope cues provided by the CI signal. In this study, we investigated whether the use of a CI alone provides access to only envelope cues and whether acoustic amplification can provide additional access to TFS cues. To this end, we evaluated speech recognition in bimodal listeners, using SS noise and two amplitude-modulated noise types, namely babble noise and amplitude-modulated steady-state (AMSS) noise. We hypothesized that speech recognition in noise depends on the envelope of the noise, but not on its TFS when listening with a CI. Secondly, we hypothesized that the amount of benefit gained by the addition of a contralateral hearing aid depends on both the envelope and TFS of the noise. The two amplitude-modulated noise types decreased speech recognition more effectively than SS noise. Against expectations, however, we found that babble noise decreased speech recognition more effectively than AMSS noise in the CI-only condition. Therefore, we rejected our hypothesis that TFS is not available to CI users. In line with expectations, we found that the bimodal benefit was highest in babble noise. However, there was no significant difference between the bimodal benefit obtained in SS and AMSS noise. Our results suggest that a CI alone can provide TFS cues and that bimodal benefits in noise depend on TFS, but not on the envelope of the noise.


Assuntos
Implantes Cocleares , Ruído , Percepção da Fala , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
2.
J Biol Chem ; 276(15): 11705-11, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11278751

RESUMO

In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , ATPase Trocadora de Hidrogênio-Potássio/química , Fosforilação , Potássio/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA