Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 1351, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165619

RESUMO

The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.


Assuntos
Desenvolvimento Vegetal , Tundra , Clima , Ecossistema , Plantas/classificação , Plantas/genética
2.
Glob Ecol Biogeogr ; 28(2): 78-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007605

RESUMO

AIM: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. LOCATION: Tundra biome. TIME PERIOD: Data collected between 1964 and 2016. MAJOR TAXA STUDIED: 295 tundra vascular plant species. METHODS: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. RESULTS: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. MAIN CONCLUSIONS: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.

3.
Science ; 294(5550): 2323-8, 2001 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-11743194

RESUMO

Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.


Assuntos
Agrobacterium tumefaciens/genética , Genoma Bacteriano , Análise de Sequência de DNA , Agrobacterium tumefaciens/classificação , Agrobacterium tumefaciens/patogenicidade , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular , Cromossomos Bacterianos/genética , Replicação do DNA , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , Tumores de Planta/microbiologia , Plantas/microbiologia , Plasmídeos , Replicon , Rhizobiaceae/genética , Transdução de Sinais , Sinorhizobium meliloti/genética , Sintenia , Telômero , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...