Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026694

RESUMO

Notch proteins are single pass transmembrane receptors that are activated by proteolytic cleavage, allowing their cytosolic domains to function as transcription factors in the nucleus. Upon binding, Delta/Serrate/LAG-2 (DSL) ligands activate Notch by exerting a "pulling" force across the intercellular ligand/receptor bridge. This pulling force is generated by Epsin-mediated endocytosis of ligand into the signal-sending cells, and results in cleavage of the force-sensing Negative Regulatory Region (NRR) of the receptor by an ADAM10 protease [Kuzbanian (Kuz) in Drosophila ]. Here, we have used chimeric Notch and DSL proteins to screen for other domains that can substitute for the NRR in the developing Drosophila wing. While many of the tested domains are either refractory to cleavage or constitutively cleaved, we identify several that mediate Notch activation in response to ligand. These NRR analogues derive from widely divergent source proteins and have strikingly different predicted structures. Yet, almost all depend on force exerted by Epsin-mediated ligand endocytosis and cleavage catalyzed by Kuz. We posit that the sequence space of protein domains that can serve as force-sensing proteolytic switches in Notch activation is unexpectedly large, a conclusion that has implications for the mechanism of target recognition by Kuz/ADAM10 proteases and is consistent with a more general role for force dependent ADAM10 proteolysis in other cell contact-dependent signaling mechanisms. Our results also validate the screen for increasing the repertoire of proteolytic switches available for synthetic Notch (synNotch) therapies and tissue engineering.

3.
Curr Biol ; 32(10): 2263-2271.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35349791

RESUMO

The conserved transmembrane receptor Notch has diverse and profound roles in controlling cell fate during animal development. In the absence of ligand, a negative regulatory region (NRR) in the Notch ectodomain adopts an autoinhibited confirmation, masking an ADAM protease cleavage site;1,2 ligand binding induces cleavage of the NRR, leading to Notch ectodomain shedding as the first step of signal transduction.3,4 In Drosophila and vertebrates, recruitment of transmembrane Delta/Serrate/LAG-2 (DSL) ligands by the endocytic adaptor Epsin, and their subsequent internalization by Clathrin-mediated endocytosis, exerts a "pulling force" on Notch that is essential to expose the cleavage site in the NRR.4-6 Here, we show that Epsin-mediated endocytosis of transmembrane ligands is not essential to activate the two C. elegans Notch proteins, LIN-12 and GLP-1. Using an in vivo force sensing assay in Drosophila,6 we present evidence (1) that the LIN-12 and GLP-1 NRRs are tuned to lower force thresholds than the NRR of Drosophila Notch, and (2) that this difference depends on the absence of a "leucine plug" that occludes the cleavage site in the Drosophila and vertebrate Notch NRRs.1,2 Our results thus establish an unexpected evolutionary plasticity in the force-dependent mechanism of Notch activation and implicate a specific structural element, the leucine plug, as a determinant.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Drosophila , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitose , Peptídeo 1 Semelhante ao Glucagon , Leucina , Ligantes , Receptores Notch/genética , Receptores Notch/metabolismo
4.
PLoS Biol ; 19(3): e3001111, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657096

RESUMO

Development of the Drosophila wing-a paradigm of organ development-is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown. Most studies have focused on Dpp and yielded disparate models in which cells throughout the wing grow at similar rates in response to the grade or temporal change in Dpp concentration or to the different amounts of Dpp "equalized" by molecular or mechanical feedbacks. In contrast, a model for Wg posits that growth is governed by a progressive expansion in morphogen range, via a mechanism in which a minimum threshold of Wg sustains the growth of cells within the wing and recruits surrounding "pre-wing" cells to grow and enter the wing. This mechanism depends on the capacity of Wg to fuel the autoregulation of vestigial (vg)-the selector gene that specifies the wing state-both to sustain vg expression in wing cells and by a feed-forward (FF) circuit of Fat (Ft)/Dachsous (Ds) protocadherin signaling to induce vg expression in neighboring pre-wing cells. Here, we have subjected Dpp to the same experimental tests used to elucidate the Wg model and find that it behaves indistinguishably. Hence, we posit that both morphogens act together, via a common mechanism, to control wing growth as a function of morphogen range.


Assuntos
Proteínas de Drosophila/genética , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Morfogênese , Proteínas Nucleares/metabolismo , Transdução de Sinais , Asas de Animais/metabolismo , Proteínas Wnt/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(50): 31935-31944, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257577

RESUMO

The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding "pre-wing" cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Tamanho do Órgão/genética , Asas de Animais/citologia
6.
Cell ; 171(6): 1383-1396.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195077

RESUMO

DSL ligands activate Notch by inducing proteolytic cleavage of the receptor ectodomain, an event that requires ligand to be endocytosed in signal-sending cells by the adaptor protein Epsin. Two classes of explanation for this unusual requirement are (1) recycling models, in which the ligand must be endocytosed to be modified or repositioned before it binds Notch and (2) pulling models, in which the ligand must be endocytosed after it binds Notch to exert force that exposes an otherwise buried site for cleavage. We demonstrate in vivo that ligands that cannot enter the Epsin pathway nevertheless bind Notch but fail to activate the receptor because they cannot exert sufficient force. This argues against recycling models and in favor of pulling models. Our results also suggest that once ligand binds receptor, activation depends on a competition between Epsin-mediated ligand endocytosis, which induces cleavage, and transendocytosis of the ligand by the receptor, which aborts the incipient signal.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Endocitose , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Asas de Animais/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Ligantes , Receptores Notch/metabolismo
7.
Science ; 356(6333)2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28302795

RESUMO

Many eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed Drosophila HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished. Hence, in this context, the inheritance of H3K27 trimethylation conveys epigenetic memory.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Lisina/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Animais , Divisão Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/genética , Metilação , Regiões Promotoras Genéticas
8.
Dev Cell ; 35(6): 737-49, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702832

RESUMO

Nuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity. Specifically, we show that activity of the Drosophila NDR kinase Warts in the developing wing depends on its transition from an inactive, "closed" conformation to a potentially active, "open" conformation mediated by Mats, a conserved Mps1-binder (Mob) protein. Further, we show that signaling interactions between the protocadherins Fat and Dachsous, organized by the morphogens Wingless and Decapentaplegic, suppress Warts by acting via the atypical myosin Dachs to inhibit or reverse this transition. The regulation of Warts conformation by Mats, Fat/Dachsous signaling, and Dachs appears independent of Warts phosphorylation by Hippo kinase, establishing a precedent for the control of NDR kinases, and hence growth, by distinct allosteric and phosphorylation mechanisms.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Animais , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento
9.
PLoS Biol ; 13(10): e1002274, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26474042

RESUMO

Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Asas de Animais/crescimento & desenvolvimento , Transporte Ativo do Núcleo Celular , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Geneticamente Modificados , Restrição Calórica/efeitos adversos , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/genética , Larva/fisiologia , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , MicroRNAs/metabolismo , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transativadores/antagonistas & inibidores , Transativadores/química , Transativadores/genética , Asas de Animais/enzimologia , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
10.
PLoS Genet ; 11(5): e1005244, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26011623

RESUMO

Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.


Assuntos
Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Notch/genética , Células Receptoras Sensoriais/metabolismo , Olfato/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Condutos Olfatórios , Receptores Notch/metabolismo , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Sinapses/genética , Sinapses/fisiologia
12.
Development ; 139(19): 3665-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949620

RESUMO

Many epithelia have a common planar cell polarity (PCP), as exemplified by the consistent orientation of hairs on mammalian skin and insect cuticle. One conserved system of PCP depends on Starry night (Stan, also called Flamingo), an atypical cadherin that forms homodimeric bridges between adjacent cells. Stan acts together with other transmembrane proteins, most notably Frizzled (Fz) and Van Gogh (Vang, also called Strabismus). Here, using an in vivo assay for function, we show that the quintessential core of the Stan system is an asymmetric intercellular bridge between Stan in one cell and Stan acting together with Fz in its neighbour: such bridges are necessary and sufficient to polarise hairs in both cells, even in the absence of Vang. By contrast, Vang cannot polarise cells in the absence of Fz; instead, it appears to help Stan in each cell form effective bridges with Stan plus Fz in its neighbours. Finally, we show that cells containing Stan but lacking both Fz and Vang can be polarised to make hairs that point away from abutting cells that express Fz. We deduce that each cell has a mechanism to estimate and compare the numbers of asymmetric bridges, made between Stan and Stan plus Fz, that link it with its neighbouring cells. We propose that cells normally use this mechanism to read the local slope of tissue-wide gradients of Fz activity, so that all cells come to point in the same direction.


Assuntos
Padronização Corporal/genética , Polaridade Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Receptores Frizzled/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Animais Geneticamente Modificados , Caderinas/genética , Caderinas/metabolismo , Caderinas/fisiologia , Polaridade Celular/fisiologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Biológicos , Pleura/embriologia , Pleura/metabolismo , Transdução de Sinais/genética , Distribuição Tecidual/genética
13.
PLoS Biol ; 9(8): e1001132, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21886484

RESUMO

Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor). By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.


Assuntos
Olho Composto de Artrópodes/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores Notch/metabolismo , Animais , Padronização Corporal , Diferenciação Celular , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
14.
Neuron ; 69(3): 468-81, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21315258

RESUMO

Delta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant-specific fashion. This response requires olfactory receptor activity and the Notch ligand Delta. We present evidence that Notch activation depends on synaptic transmission by the ORNs in which the receptors are active and is modulated by the activity of local interneurons in the antennal lobe. It is also subject to regulatory inputs from olfactory receptor activity in other ORNs. These findings identify a correlate of stimulus-dependent brain activity and potentially new forms of neural integration and plasticity.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular , Receptores Notch/fisiologia , Receptores Odorantes/fisiologia , Transdução de Sinais/fisiologia
15.
PLoS Biol ; 8(6): e1000386, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20532238

RESUMO

During development, the Drosophila wing primordium undergoes a dramatic increase in cell number and mass under the control of the long-range morphogens Wingless (Wg, a Wnt) and Decapentaplegic (Dpp, a BMP). This process depends in part on the capacity of wing cells to recruit neighboring, non-wing cells into the wing primordium. Wing cells are defined by activity of the selector gene vestigial (vg) and recruitment entails the production of a vg-dependent "feed-forward signal" that acts together with morphogen to induce vg expression in neighboring non-wing cells. Here, we identify the protocadherins Fat (Ft) and Dachsous (Ds), the Warts-Hippo tumor suppressor pathway, and the transcriptional co-activator Yorkie (Yki, a YES associated protein, or YAP) as components of the feed-forward signaling mechanism, and we show how this mechanism promotes wing growth in response to Wg. We find that vg generates the feed-forward signal by creating a steep differential in Ft-Ds signaling between wing and non-wing cells. This differential down-regulates Warts-Hippo pathway activity in non-wing cells, leading to a burst of Yki activity and the induction of vg in response to Wg. We posit that Wg propels wing growth at least in part by fueling a wave front of Ft-Ds signaling that propagates vg expression from one cell to the next.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Animais
16.
Nat Cell Biol ; 10(12): 1379-82, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19043429

RESUMO

Most, perhaps all cells in epithelial sheets are polarized in the plane of the sheet. This type of polarity, referred to as planar cell polarity (PCP), can be expressed in the orientation of cilia and stereocilia, in oriented outgrowths such as hairs, in the plane of cell division, in directed cell movement and possibly in the orientation of axon extension. Another popular area in current research is growth: there is an attempt to find systems that fix the shape and size of organs. Although both polarity and growth are subject to overall control by morphogen gradients, the mechanisms of this control are almost completely unknown. Here we discuss recent evidence for a 'steepness hypothesis' that links these two apparently disconnected features of animal development.


Assuntos
Caderinas/metabolismo , Polaridade Celular , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Animais , Divisão Celular , Células Clonais , Drosophila melanogaster/enzimologia , Modelos Biológicos , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/metabolismo
17.
Curr Biol ; 18(20): R959-61, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18957252

RESUMO

The mechanisms of planar cell polarity are being revealed by genetic analysis. Recent studies have provided new insights into interactions between three proteins involved in planar cell polarity: Flamingo, Frizzled and Van Gogh.


Assuntos
Polaridade Celular , Proteínas de Drosophila/genética , Drosophila/genética , Animais , Padronização Corporal , Comunicação Celular , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
18.
Development ; 134(16): 3011-20, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17634191

RESUMO

Following segregation of the Drosophila wing imaginal disc into dorsal (D) and ventral (V) compartments, the wing primordium is specified by activity of the selector gene vestigial (vg). In the accompanying paper, we present evidence that vg expression is itself driven by three distinct inputs: (1) short-range DSL (Delta/Serrate/LAG-2)-Notch signaling across the D-V compartment boundary; (2) long-range Wg signaling from cells abutting the D-V compartment boundary; and (3) a short-range signal sent by vg-expressing cells that entrains neighboring cells to upregulate vg in response to Wg. Furthermore, we showed that these inputs define a feed-forward mechanism of vg autoregulation that initiates in D-V border cells and propagates from cell to cell by reiterative cycles of vg upregulation. Here, we provide evidence that this feed-forward mechanism is required for normal wing growth and is mediated by two distinct enhancers in the vg gene. The first is a newly defined ;priming' enhancer (PE), that provides cryptic, low levels of Vg in most or all cells of the wing disc. The second is the previously defined quadrant enhancer (QE), which we show is activated by the combined action of Wg and the short-range vg-dependent entraining signal, but only if the responding cells are already primed by low-level Vg activity. Thus, entrainment and priming constitute distinct signaling and responding events in the Wg-dependent feed-forward circuit of vg autoregulation mediated by the QE. We posit that Wg controls the expansion of the wing primordium following D-V segregation by fueling this autoregulatory mechanism.


Assuntos
Proteínas de Drosophila/genética , Drosophila/embriologia , Drosophila/genética , Elementos Facilitadores Genéticos/fisiologia , Proteínas Nucleares/genética , Asas de Animais/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Drosophila/fisiologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/fisiologia , Modelos Biológicos , Proteínas Proto-Oncogênicas/fisiologia , Asas de Animais/metabolismo , Proteína Wnt1
19.
Development ; 134(16): 3001-10, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17634192

RESUMO

The Drosophila wing primordium is defined by expression of the selector gene vestigial (vg) in a discrete subpopulation of cells within the wing imaginal disc. Following the early segregation of the disc into dorsal (D) and ventral (V) compartments, vg expression is governed by signals generated along the boundary between the two compartments. Short-range DSL (Delta/Serrate/LAG-2)-Notch signaling between D and V cells drives vg expression in ;border' cells that flank the boundary. It also induces these same cells to secrete the long-range morphogen Wingless (Wg), which drives vg expression in surrounding cells up to 25-30 cell diameters away. Here, we show that Wg signaling is not sufficient to activate vg expression away from the D-V boundary. Instead, Wg must act in combination with a short-range signal produced by cells that already express vg. We present evidence that this vg-dependent, vg-inducing signal feeds forward from one cell to the next to entrain surrounding cells to join the growing wing primordium in response to Wg. We propose that Wg promotes the expansion of the wing primordium following the D-V segregation by fueling this non-autonomous autoregulatory mechanism.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Homeostase , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Asas de Animais/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Drosophila/fisiologia , Embrião não Mamífero , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Proteínas Proto-Oncogênicas/fisiologia , Asas de Animais/metabolismo , Proteína Wnt1
20.
Nat Rev Genet ; 8(7): 555-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17563758

RESUMO

In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.


Assuntos
Polaridade Celular/genética , Drosophila melanogaster/genética , Transdução de Sinais , Animais , Cílios/genética , Células Clonais , Camundongos , Modelos Biológicos , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...