Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687763

RESUMO

Biodegradable craniofacial and cranial implants are a new aspect in terms of reducing potential complications, especially in the long term after surgery. They are also an important contribution in the field of surgical reconstructions for children, for whom it is important to restore natural bone in a relatively short time, due to the continuous growth of bones. The aim of this study was to verify the impact of the technology on biodegradability and to estimate the risk of inappropriate implant resorption time, which is an important aspect necessary to select prototypes of implants for in vivo testing. Prototypes of implants were made using two technologies: 3D printing using a PLDLA: poly(L-co-D,L lactide) (PLDLA) filament containing hydroxyapatite nanoparticles, and injection using PLDLA. After the radiation sterilization process, they were subjected to in vitro degradation under accelerated conditions. As part of this study, the in vitro degradation of newly developed biodegradable implant technologies was assessed in accordance with the guidelines of European standards. It was found that the implant manufacturing process had a significant impact on the degradation time under simulated conditions in various media. Implants made using the injection technique were characterized by lower susceptibility to degradation media compared to the 3D-printed implant under accelerated conditions.

2.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408005

RESUMO

A knitted implant, unilaterally modified with plasma-assisted chemical-vapor deposition (PACVD), and with a nano-layer of fluorine derivative supplementation, for reducing the risk of complications related to adhesions, and the formation of a thick postoperative scar was prepared. The biological evaluation of designed or modified medical devices is the main aspect of preclinical research. If such studies use a medical device with prolonged contact with connective tissue (more than 30 days), biocompatibility studies require a safety assessment in terms of toxicity in vitro and in vivo, allergenicity, irritation, and cancerogenicity, reproductive and developmental toxicity. The ultimate aspect of biological evaluation is biofunctionality, and evaluation of the local tissue response after implantation, resulting in the determination of all aspects of local biocompatibility with the implemented synthetic material. The implantation of PACVD-modified materials in muscle allows us to estimate the local irritation effect on the connective tissue, determining the risk of scar formation, whereas implantation of the above-mentioned knitted fabric into the abdominal wall, assists with evaluating the risk of fistula formation-the main post-surgical complications. The research aimed to evaluate the local reaction of the soft tissues after the implantation of the knitted implants modified with PACVD of the fluoropolymer in the nanostuctural form. The local effect that occurred during the implantation of the designed implants was quantitatively and qualitatively evaluated when PACVD unmodified (reference), and modified medical devices were implanted in the abdominal cavity (intra-abdominal position) for 12 or into the muscles for 56 weeks. The comparative semi-quantitative histological assessment included the severity of inflammatory cells (multinucleated cells, lymphocytes, plasma cells, macrophages, giant cells) and the tissue response (necrosis, neovascularization, fibrosis, and fat infiltration) on a five-point scale. The knitted implants modified by PACVD did not indicate cumulative tissue response when they were implanted in the muscle and intra-abdominally with direct contact with the viscera. They reduced local tissue reaction (score -2.71 after 56 weeks of the implantation) and internal organ adhesion (irritation score -2.01 and adhesion susceptibility -0.3 after 12 weeks of the implantation) compared with the reference (unmodified by PACVD) knitted implant, which had an identical structure and was made of the same source.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207064

RESUMO

The replacement of affected blood vessels of the polymer material can cause imbalances in the blood haemostatic system. Changes in blood after the implantation of vascular grafts depend not only on the chemical composition but also on the degree of surface wettability. The Dallon® H unsealed hydrophilic knitted vascular prosthesis double velour was assessed at work and compare with hydrophobic vascular prosthesis Dallon®. Spectrophotometric studies were performed in the infrared and differential scanning calorimetry, which confirmed the effectiveness of the process of modifying vascular prostheses. Determination of the parameters of coagulation time of blood after contact in vitro with Dallon® H vascular prosthesis was also carried out. Prolongation of activated thromboplastin time, decreased activity of factor XII, IX and VIII, were observed. The prolonged thrombin and fibrinogen were reduced in the initial period of the experiment. The activity of plasminogen and antithrombin III and protein C were at the level of control value. The observed changes in the values of determined parameters blood coagulation do not exceed the range of referential values for those indexes. The observed changes are the result of considerable blood absorptiveness by the prosthesis of blood vessels and their sealing.

4.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300976

RESUMO

The presented research focuses on the concept of an advanced ballistic personal protection design, taking into account safety as well as performance requirements. The application of the multi-criterial analysis (MCA) allows for a comprehensive comparison of all the properties of materials and to select the optimal personal ballistic protection system, considering their mechanical and ballistic properties. The newly developed hybrid ballistic composites, consisting of two or three various components (variations of ballistic and/or non-ballistic textiles; hybrid ballistic plates-HBP), were evaluated via a multi-criterial analysis that considered a wide range of properties, describing behavior and safety usage, as well as the economical aspect of their fabrication.

5.
Molecules ; 22(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244748

RESUMO

Designing usable forms of topical haemostatic agents is the most important activity during the design process, resulting in strengthened functional properties of the final medical devices. This study aimed to propose indications for a research programme based on risk management supporting the development of two usable forms of a topical haemostatic agent: chitosan/alginate lyophilized foam and chitosan/alginate impregnated gauze. Both of the usable forms of the topical haemostatic agent, being the main part of the modified combat gauze, were fabricated using the chitosan/alginate complex. Risk analysis is helpful in developing an appropriate research programme, significantly reducing the risk to an acceptable level.


Assuntos
Ácido Algínico/química , Quitosana/química , Hemostáticos/química , Bandagens , Cinética , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vapor , Propriedades de Superfície , Vasoconstritores/química
6.
Molecules ; 22(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186078

RESUMO

In response to the demand for new implant materials characterized by high biocompatibility and bioresorption, two prototypes of fibrous nanocomposite implants for osseous tissue regeneration made of a newly developed blend of poly(l-lactide-co-glycolide) (PLGA) and syntheticpoly([R,S]-3-hydroxybutyrate), PLGA/PHB, have been developed and fabricated. Afibre-forming copolymer of glycolide and l-lactide (PLGA) was obtained by a unique method of synthesis carried out in blocksusing Zr(AcAc)4 as an initiator. The prototypes of the implants are composed of three layers of PLGA or PLGA/PHB, nonwoven fabrics with a pore structure designed to provide the best conditions for the cell proliferation. The bioactivity of the proposed implants has been imparted by introducing a hydroxyapatite material and IGF1, a growth factor. The developed prototypes of implants have been subjected to a set of in vitro and in vivobiocompatibility tests: in vitro cytotoxic effect, in vitro genotoxicity and systemic toxicity. Rabbitsshowed no signs of negative reactionafter implantation of the experimental implant prototypes.


Assuntos
Implantes Absorvíveis , Regeneração Óssea , Hidroxibutiratos , Ácido Láctico/química , Ácido Láctico/farmacologia , Nanocompostos , Poliésteres , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Alicerces Teciduais , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular , Humanos , Hidroxibutiratos/química , Ácido Láctico/toxicidade , Camundongos , Nanocompostos/química , Poliésteres/química , Ácido Poliglicólico/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Proibitinas , Coelhos , Engenharia Tecidual
7.
Glob Cardiol Sci Pract ; 2016(3): e201631, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29043276

RESUMO

Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas.

8.
Polim Med ; 32(1-2): 13-22, 2002.
Artigo em Inglês, Polonês | MEDLINE | ID: mdl-12391780

RESUMO

Polyethyleneterephthalate (PET), and to a lesser extent Teflon have become the major synthetic grafting material. Unlike nylon, Ivalon, and Vinyon-N which lose their tensile strength after implantation, PET and Teflon remain essentially unchanged even after long periods. TRICOMED S.A. produces the family of the knitted vascular implants Dallon made from PET fibres including: Dallon, Dallon H, Tricogel. Both Dallon and Dallon H are manufactured in a form of double (external and internal) velour surface using multifilament yarn and having optimal graft design (a variety of sizes and lengths). The velour surface gives the surface a velvety, plush texture, which improves tissue in--growth. Moreover, Dallon H is a unique vascular prostheses showing the increase in the blood susceptibility that is useful for 4 times less blood demand during preclotting as compared with standard prosthesis. Tricogel graft is made of thin-wall prostheses sealed with the porcine gelatin that provides intraoperative tightness (without preclotting) and the optimal healing process. Hydrophilic behavior of the graft is observed as an instant moistening of the surface with patient's blood and as sweating. The blood stream does not dissolve nor washes away the gelatin but causes the gelatin film to swell, which makes a better tightness. The work will describe the properties of manmade vascular grafts as well as their applications in the vascular surgery.


Assuntos
Materiais Biocompatíveis , Prótese Vascular , Prótese Vascular/tendências , Previsões , Desenho de Prótese/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...