Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313747, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685565

RESUMO

Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.

2.
Dalton Trans ; 53(14): 6224-6233, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488116

RESUMO

Density functional theory plus Hubbard U (DFT+U) methodology was used to calculate the structures and energetic landscapes of CeSiO4, including its stetindite and scheelite phases from ambient pressure to ∼24 GPa. To ensure accurate simulations of the high-pressure structures, assessments of strain-stress methods and stress-strain methods were conducted in prior, with the former found to have a better agreement with the experimental result. From DFT calculations the equation of states (EOS) of both stetindite and scheelite were further obtained, with the fitted bulk moduli being 182(2) GPa and 190.0(12) GPa, respectively. These results were found to be consistent with the experimental values of 177(5) GPa and 222(40) GPa. Furthermore, the calculated energetics suggest that the stetindite structure is more thermodynamically stable than the scheelite structure at a pressure lower than 8.35 GPa. However, the stetindite → scheelite phase transition was observed experimentally at a much higher pressure of ∼15 GPa. A further phonon spectra investigation by the density functional perturbation theory (DFPT) indicated the Eg1 mode is being softened with pressure and becomes imaginary after 12 GPa, which is a sign of the lattice instability. Consequently, it was concluded that the stetindite → scheelite transition is predominantly initiated by the lattice instability under high-pressure.

3.
Nanoscale ; 16(10): 5421-5432, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38385242

RESUMO

Nanocrystalline pyrochlore materials have been investigated for their enhanced radiation tolerance as ceramic nuclear waste hosts. In this work, we study the thermodynamic driving force of nano-scale materials for radiation resistance. The size dependent thermodynamic properties of a series of Y2Ti2O7 nanoparticles were investigated. Samples were synthesized by a sol-gel method and characterized by synchrotron X-ray diffraction, BET analysis, and thermogravimetric analysis. The surface and interface enthalpies of Y2Ti2O7 were determined by high temperature oxide melt drop solution calorimetry to be 4.07 J m-2 and 3.04 J m-2, respectively. The experimentally obtained surface energy is in good agreement with computationally derived average surface energies for yttrium and other rare-earth titanate pyrochlores. Theoretical links between nanoparticle stability, surface energy, and radiation resistance of pyrochlore materials were then explored.

4.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236299

RESUMO

Molten salt reactors (MSRs) are a promising alternative to conventional nuclear reactors as they may offer more efficient fuel utilization, lower waste generation, and improved safety. The state of knowledge of the properties of liquid salts is far from complete. In order to develop the MSR concept, it is essential to develop a fundamental understanding of the thermodynamic properties, including the heat capacities (Cp) and enthalpies of mixing (ΔHmix), of molten salts at MSR operating conditions. Historically, the Cp values of molten salts were determined by drop-calorimetry or differential scanning calorimetry, whereas their ΔHmix values were typically measured using specialized high temperature calorimeters. In this work, a new methodology for measuring both the Cp and the ΔHmix of molten chloride salts was developed. This novel method involves sealing a chloride salt sample in a nickel capsule and performing conventional transposed temperature drop calorimetry using a commercially available Setaram AlexSYS-800 Tian-Calvet twin microcalorimeter. This methodology may be applied to calorimetric measurements of more complex salt mixtures, especially mixtures containing actinides and fission products.

5.
Inorg Chem ; 62(45): 18724-18731, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917811

RESUMO

Uranium trichloride (UCl3) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl3, at both ambient condition and in situ high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes (vi) of UCl3 exhibit a negative temperature derivative ((∂νi/∂T)P) with increasing temperature. This red-shift behavior is likely due to the elongation of U-Cl bonds. The average isobaric mode Grüneisen parameter (γiP = 0.91 ± 0.02) of UCl3 was determined through use of the coefficient of thermal expansion published in Vogel et al. (2021) and the (∂νi/∂T)P values determined in this study. These results are in general agreement with those calculated here by density functional theory (DFT+U). Finally, a comparison of the ambient band positions of UCl3 to those of isostructural lanthanide (La-Eu) and actinide chlorides (Am-Cf) has been made.

6.
Dalton Trans ; 52(29): 10023-10037, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37408368

RESUMO

Although ZrSiO4 is the most well-known compound in the zircon-structured family (space group I41/amd), the experimental conditions for preparing pure and well-crystallized phases that are doped with a tetravalent element via hydrothermal synthesis have never been clearly discussed in the literature. With the aim to answer this question, the experimental conditions of the preparation of ZrSiO4 and (Zr,Ce)SiO4 were investigated in order to synthesize well-crystallized and pure phases. A multiparametric study has been carried out using soft hydrothermal conditions with variables including reactant concentration, initial pH of the reactive medium, and duration of the hydrothermal treatment. Pure ZrSiO4 was obtained through hydrothermal treatment for 7 days at 250 °C, within a large acidity range (1.0 ≤ pH ≤ 9.0) and starting from CSi ≈ CZr ≥ 0.2 mol L-1. As hydrothermally prepared zircon structured phases can be both hydrated and hydroxylated, its annealed form was also studied after heating to 1000 °C. Based on these results, the synthesis of (Zr,Ce)SiO4 solid solutions was also investigated. The optimal hydrothermal conditions to acquire pure and crystallized phases were as follows: 7 days at 250 °C with initial pH = 1 and concentration of the reactants equal to 0.2 mol L-1. This led to Zr1-xCexSiO4 solid solutions with the incorporated Ce content up to 40 mol%. Samples were characterized using multiple methods, including laboratory and synchrotron PXRD, IR and Raman spectroscopies, SEM, and TGA. Moreover, it was found that these phases were thermally stable in air up to at least 1000 °C.

7.
Small ; 19(18): e2207240, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36703531

RESUMO

It is critical to develop high-performance electrocatalyst for electrochemical nonenzymatic glucose sensing. In this work, a single-atom Pt supported on Cu@CuO core-shell nanowires (Pt1 /Cu@CuO NWs) for electrochemical nonenzymatic glucose sensor is designed. Pt1 /Cu@CuO NWs exhibit excellent electrocatalytic oxidation toward glucose with 70 mV lower onset potential (0.131 V) and 2.4 times higher response current than Cu NWs. Sensors fabricated using Pt1 /Cu@CuO NWs also show high sensitivity (852.163 µA mM-1 cm-2 ), low detection limit (3.6 µM), wide linear range (0.01-5.18 µM), excellent selectivity, and great long-term stability. The outstanding sensing performance of Pt1 /Cu@CuO NWs, investigated by experiments and density functional theory (DFT) calculations, is attributed to the synergistic effect between Pt single atoms and Cu@CuO core-shell nanowires that generates strong binding energy of glucose on the nanowires. The work provides a new pathway for exploring highly active SACs for electrochemical nonenzymatic glucose sensor.

8.
Inorg Chem ; 61(38): 15152-15165, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36099470

RESUMO

Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures. Their thermodynamic stabilities were directly measured by high-temperature drop combustion calorimetry. Normalized (per mole of Al) enthalpies of formation (ΔH*f) of MIL-96, MIL-100, and MIL-110 from Al2O3, H3BTC, and H2O (only Al2O3 and H3BTC for MIL-100) were determined to be -56.9 ± 13.7, -36.2 ± 17.9, and 62.8 ± 11.6 kJ/mol·Al, respectively. Our results demonstrate that MIL-96 and MIL-100 are thermodynamically favorable, while MIL-110 is metastable, in agreement with thermal and hydrothermal stability trends. The enthalpic preferences of MIL-96 and MIL-100 may be attributed to their shared trinuclear µ3-oxo-bridged (Al3(µ3-O)) secondary building units (SBUs) promoting stabilization of Al polyhedra by the ligands within these frameworks, in comparison to the sterically strained Al8 octamer cluster cores formed in MIL-110. Furthermore, similar ΔH*f of MIL-96 and MIL-100 explain their concurrent formation as physical mixtures often encountered during synthesis, implying the importance of kinetic factors that may facilitate the formation of Al-BTC framework isomers. More importantly, the normalized formation enthalpies of Al-BTC MOF isomers follow a negative correlation with the ratio of charged coordinated substituents to linkers (normalized per mole of Al within the MOF formula unit), with enthalpic preference given to systems with smaller (O2- + OH-)/ligand ratios. This trend has been successfully extended to the previously measured ΔH*f of several Zn4O-based frameworks (e.g., MOF-5, MOF-5(DEF), MOF-177, UMCM-1), all of which have been found to be metastable with respect to their dense phases (ZnO, H2O, and ligands). The result suggests that carboxylate MOFs with higher metal coordination environments attain more enthalpic stabilization from the coordinated ligands. Thus, the formation of some lanthanide/actinide, transition metal, and main group carboxylate frameworks may be energetically more favored, which, however, requires further studies.

9.
ACS Appl Mater Interfaces ; 14(36): 41542-41554, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040849

RESUMO

MXenes are ultra-thin two-dimensional layered early transition-metal carbides and nitrides with potential applications in various emerging technologies, such as energy storage, water purification, and catalysis. MXenes are synthesized from the parent MAX phases with different etching agents [hydrofluoric acid (HF) or fluoride salts with a strong acid] by selectively removing a more weakly bound crystalline layer of Al or Ga replaced by surface groups (-O, -F, -OH, etc.). Ti3C2Tx MXene synthesized by CoF2/HCl etching has layered heterogeneity due to intercalated Al3+ and Co2+ that act as pillars for interlayer spacings. This study investigates the impacts of etching environments on the compositional, interfacial, structural, and thermodynamic properties of Ti3C2Tx MXenes. Specifically, compared with HF/HCl etching, CoF2/HCl treatment leads to a Ti3C2Tx MXene with a broader distribution of interlayer distances, increased number of intercalated cations, and decreased degree of hydration. Moreover, we determine the enthalpies of formation at 25 °C (ΔHf,25°C) of Ti3C2Tx MXenes etched with CoF2/HCl, ΔHf,25°C = -1891.7 ± 35.7 kJ/mol Ti3C2, and etched with HF/HCl, ΔHf,25°C = -1978.2 ± 35.7 kJ/mol Ti3C2, using high-temperature oxidation drop calorimetry. These energetic data are discussed and compared with experimentally derived and computationally predicted values to elucidate the effects of intercalants and surface groups of MXenes. We find that MXenes with intercalated metal cations have a less exothermic ΔHf,25°C from an increase in the interlayer space and dimension heterogeneity and a decrease in the degree of hydration leading to reduced layer-layer van der Waals interactions and weakened hydration effects applied on the MXene layers. The outcomes of this study further our understanding of MXene's energetic-structural-interfacial property relationships.

10.
Inorg Chem ; 60(2): 718-735, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393766

RESUMO

Orthosilicates adopt the zircon structure types (I41/amd), consisting of isolated SiO4 tetrahedra joined by A-site metal cations, such as Ce and U. They are of significant interest in the fields of geochemistry, mineralogy, nuclear waste form development, and material science. Stetindite (CeSiO4) and coffinite (USiO4) can be formed under hydrothermal conditions despite both being thermodynamically metastable. Water has been hypothesized to play a significant role in stabilizing and forming these orthosilicate phases, though little experimental evidence exists. To understand the effects of hydration or hydroxylation on these orthosilicates, in situ high-temperature synchrotron and laboratory-based X-ray diffraction was conducted from 25 to ∼850 °C. Stetindite maintains its I41/amd symmetry with increasing temperature but exhibits a discontinuous expansion along the a-axis during heating, presumably due to the removal of water confined in the [001] channels, which shrink against thermal expansion along the a-axis. Additional in situ high-temperature Raman and Fourier transform infrared spectroscopy also confirmed the presence of the confined water. Coffinite was also found to expand nonlinearly up to 600 °C and then thermally decompose into a mixture of UO2 and SiO2. A combination of dehydration and dehydroxylation is proposed for explaining the thermal behavior of coffinite synthesized hydrothermally. Additionally, we investigated high-temperature structures of two coffinite-thorite solid solutions, uranothorite (UxTh1-xSiO4), which displayed complex variations in composition during heating that was attributed to the negative enthalpy of mixing. Lastly, for the first time, the coefficients of thermal expansion of CeSiO4, USiO4, U0.46Th0.54SiO4, and U0.9Th0.1SiO4 were determined to be αV = 14.49 × 10-6, 14.29 × 10-6, 17.21 × 10-6, and 17.23 × 10-6 °C-1, respectively.

11.
Inorg Chem ; 59(18): 13174-13183, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32871073

RESUMO

Zircon (ZrSiO4, I41/amd) can accommodate actinides, such as thorium, uranium, and plutonium. The zircon structure has been determined for several of the end-member compositions of other actinides, such as plutonium and neptunium. However, the thermodynamic properties of these actinide zircon structure types are largely unknown due to the difficulties in synthesizing these materials and handling transuranium actinides. Thus, we have completed a thermodynamic study of cerium orthosilicate, stetindite (CeSiO4), a surrogate of PuSiO4. For the first time, the standard enthalpy of formation of CeSiO4 was obtained by high temperature oxide melt solution calorimetry to be -1971.9 ± 3.6 kJ/mol. Stetindite is energetically metastable with respect to CeO2 and SiO2 by 27.5 ± 3.1 kJ/mol. The metastability explains the rarity of the natural occurrence of stetindite and the difficulty of its synthesis. Applying the obtained enthalpy of formation of CeSiO4 from this work, along with those previously reported for USiO4 and ThSiO4, we developed an empirical energetic relation for actinide orthosilicates. The predicted enthalpies of formation of AnSiO4 are then determined with a discussion of future strategies for efficiently immobilizing Pu or minor actinides in the zircon structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...