Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891930

RESUMO

Plants are a group of organisms that have developed remarkable adaptations to merely exist in the environment [...].


Assuntos
Plantas , Estresse Fisiológico , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Adaptação Fisiológica
2.
Chemosphere ; 362: 142719, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944353

RESUMO

The study was carried out in the most industrialised region of southern Poland. Four areas were selected for the study: the vicinity of the Miasteczko Slaskie Zn-Pb-works (ZW; with three transects selected: A, B, and C), and the metalliferous waste heaps (H1, H2, H3). Samples were taken from the surface soil layer, while only mature silver birch (Betula pendula Roth) trees (3-4 m high) growing spontaneously in the study area were selected for the collection of leaves. The analysis of metals including trace metals (TMs; Ag, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Tl, and Zn) in the soil and leaves, as well as the contents of specialized leaf compounds belonging to polyphenols were performed. In general, the B. pendula trees in transects A and B located within 500 m of the furnaces exhibited 3-9 times higher content of TMs in their leaves compared to the plants located further away from the Zn smelter. In contrast, the quantity of TM in trees from transect C was independent of distance. The accumulation of TMs in the leaves was significantly lower in the metalliferous waste heap sites compared to the ZW area. It was hypothesised that the accumulation of TMs in B. pendula leaves would depend on the location and distance from the polluting source. It was demonstrated that TMs content in soil affects the accumulation of phenolic acids and flavonoids.

3.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731430

RESUMO

The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.


Assuntos
Antibacterianos , Bacillus cereus , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Extratos Vegetais , Raízes de Plantas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Raízes de Plantas/química , Animais , Células CACO-2 , Metanol/química , Fracionamento Químico , Peixe-Zebra
4.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731554

RESUMO

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.


Assuntos
Ácidos Graxos , Brotos de Planta , Ácidos Graxos/análise , Brotos de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Ácido alfa-Linolênico/análise , Óleos de Plantas/química , Óleos de Plantas/análise
5.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791538

RESUMO

Various studies have shown that Hypogymnia physodes are a source of many biologically active compounds, including lichen acids. These lichen-specific compounds are characterized by antioxidant, antiproliferative, and antimicrobial properties, and they can be used in the cosmetic and pharmaceutical industries. The main aim of this study was to optimize the composition of natural deep eutectic solvents based on proline or betaine and lactic acid for the extraction of metabolites from H. physodes. The design of the experimental method and the response surface approach allowed the optimization of the extraction process of specific lichen metabolites. Based on preliminary research, a multivariate model of the experiment was developed. For optimization, the following parameters were employed in the experiment to confirm the model: a proline/lactic acid/water molar ratio of 1:2:2. Such a mixture allowed the efficient extraction of three depsidones (i.e., physodic acid, physodalic acid, 3-hydroyphysodic acid) and one depside (i.e., atranorin). The developed composition of the solvent mixtures ensured good efficiency when extracting the metabolites from the thallus of H. physodes with high antioxidant properties.


Assuntos
Depsídeos , Lactonas , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Solventes Eutéticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Prolina/química , Líquens/química , Ácido Láctico/química , Química Verde/métodos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacologia , Solventes/química , Dibenzoxepinas , Hidroxibenzoatos
6.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396710

RESUMO

Fruits are very important dietary components and a source of biologically active compounds used in nutritional pharmacology. Particularly due to the presence of polyphenolic compounds, fruits play an important role in the prevention of diseases of civilization. Therefore, it is important to study the phytochemicals and biological activity of fruits, especially those with a long-standing use in ethnomedicine. In this study, we determined the chemical profile and biological activity of a methanolic extract of the Eleutherococcus divaricatus fruits. Amongst nine polyphenols studied, only chlorogenic acid, protocatechuic acid, and eleutheroside E have been detected. The extract showed a weak anti-hyaluronidase activity from bovine testicular in a range of 9.06-37.70% and quite high for human serum hyaluronidase from children diagnosed with acute leukemia in a range of 76-86%. A weak anti-tyrosinase activity was obtained in a range of 2.94-12.46%. Moreover, the extract showed antioxidant properties against DPPH radical, ABTS radical, and O2•-. In addition, the antioxidant activity of the extract was evaluated by FRAP assay and Fe2+ ion chelation assay. These preliminary studies partially justify the traditional use of the plant in inflammatory- and immune-related diseases, in which hyaluronidase and free radicals can participate. A difference in human serum hyaluronidase inhibition may result from the inter-patient variability. Regardless of that, the results mean that polyphenolic compounds may stimulate activity of hyaluronidase, as well as to protect cells from the oxidative damages. However, further studies in ex vivo and in vivo models are needed, including blood isolated from a larger number of patients.


Assuntos
Antioxidantes , Eleutherococcus , Criança , Humanos , Animais , Bovinos , Antioxidantes/química , Frutas/química , Eleutherococcus/química , Hialuronoglucosaminidase , Extratos Vegetais/química , Soro
8.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762372

RESUMO

The herbivore Cameraria ohridella (kingdom Animalia) and the pathogen Erysiphe flexuosa (kingdom Fungi) are considered pests and biotic stressors of Aesculus hippocastanum (chestnut trees). The impact of both pests on the accumulation of secondary metabolites in chestnut leaves was investigated. Specifically, the interactive effect of both pests on metabolite accumulation and their potential role in enhancing the resistance of chestnut trees to biological stress was the focus of this study. Aesculus hippocastanum leaves with varying degrees of Cameraria ohridella infestation and Erysiphe flexuosa infection were used in this research. Leaf samples were collected during the plant vegetative growth phase and evaluated for pest infection and secondary metabolite content. Eight main polyphenols were identified in the leaves: (1) neochlorogenic acid, (2) (-)-epicatechin, (3) procyanidin trimer A-type, (4) procyanidin tetramer A-type, (5) quercetin-3-O-arabinoside, (6) quercetin-3-O-rhamnoside, (7) kaempferol-3-O-arabinoside, and (8) kaempferol-3-O-rhamnoside. It was found that the accumulation of metabolites, primarily those derived from epicatechin and quercetin, during the initial vegetation phase (up to 11.05 or 09.05), strongly depended on the later degree of pest infection. The differences observed in the metabolite dynamics in the chestnut leaves, depending on the extent of infection, indicate the development of a metabolic response mechanism in chestnut trees to biological stress.


Assuntos
Aesculus , Mariposas , Proantocianidinas , Animais , Quempferóis , Quercetina , Mariposas/fisiologia , Folhas de Planta , Fenóis
9.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630255

RESUMO

Despite the fact that there are many studies related to the adaptogenic and pro-healthy activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully known, especially those coming from the wild regions of Asia, Africa, and South America. The aim of these studies was to examine the contents of non-nutritional compounds, such as polyphenols, flavonoids, and phenolic acids in ten adaptogenic species (Astragalus membranaceus (AM), Uncaria rhynchophylla (UR), Polygonum multiflorum (PM), Angelica sinensis (AS), Andrographis paniculatea (AP), Tinospora cordifolia (TC), Uncaria tomentosa (UT), Pfaffia paniculate (PP), Sutherlandia frutescens (SF), and Rhaponticum carthamoides (RC)). Considering biological activity, their antioxidant (DPPH, ABTS, FRAP, and ferrous-ion-chelating ability assays), anti-acetylcholinesterase, anti-hyaluronidase, and anti-tyrosinase activities were evaluated. The richest in polyphenols, flavonoids, and phenolic acids was UR (327.78 mg GAE/g, 230.13 mg QE/g, and 81.03 mg CA/g, respectively). The highest inhibitions of acetylcholinesterase, hyaluronidase, and tyrosinase were observed for TC, UR, and PM, respectively. In the case of antioxidant properties, extract from PM appeared to most strongly reduce DPPH, extract from UR inhibited ABTS, and extract from SF showed the best chelating properties. It should be noted that a particularly interesting plant was Ulcaria rhynchophylla. The results mean that there were compounds in UR with broad biological activities, and this species should be explored in more detail. Additionally, our results justify the traditional use of these species in the nutripharmacological or ethnopharmacological care systems of different regions.


Assuntos
Antioxidantes , Fenóis , Antioxidantes/farmacologia , Polifenóis/farmacologia , África , Ásia , América do Sul , Flavonoides , Acetilcolinesterase
10.
Molecules ; 28(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630400

RESUMO

Carlina acaulis is highly valued in the traditional medicine of many European countries for its diuretic, cholagogue, anthelmintic, laxative, and emetic properties. Moreover, practitioners of natural medicine indicate that it has anti-cancer potential. However, its phytochemistry is still little known. In the present study, the polyphenolic composition of the plant was investigated using ultra-high-performance liquid chromatography coupled with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC-HR/QTOF/MS-PDA). The fractionation of the extract was carried out using liquid-liquid extraction and preparative chromatography techniques. Cytotoxicity was assessed based on neutral red and MTT assays. The obtained data showed that the species is rich in chlorogenic acids and C-glycosides of luteolin and apigenin. The total amount of chlorogenic acids was 12.6 mg/g. Among flavonoids, kaempferol dihexosidipentose and schaftoside were the most abundant, reaching approximately 3 mg/g, followed by isoorientin, vitexin-2-O-rhamnoside, and vicenin II, each with a content of approximately 2 mg/g. Furthermore, the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and human cervical cancer (HeLa) cells was investigated using the normal epithelial colon cell line (CCD 841CoTr) as a reference. It has been demonstrated that the ethyl acetate fraction was the most abundant in polyphenolic compounds and had the most promising anticancer activity. Further fractionation allowed for the obtaining of some subfractions that differed in phytochemical composition. The subfractions containing polyphenolic acids and flavonoids were characterized by low cytotoxicity against cancer and normal cell lines. Meanwhile, the subfraction with fatty acids was active and decreased the viability of HeLa and HT29 with minimal negative effects on CCD 841CoTr. The effect was probably linked to traumatic acid, which was present in the fraction at a concentration of 147 mg/g of dried weight. The research demonstrated the significant potential of C. acaulis as a plant with promising attributes, thus justifying further exploration of its biological activity.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Colorretais , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Flavonoides/farmacologia , Extratos Vegetais/farmacologia
11.
Cancers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509375

RESUMO

Honey bee venom in its composition contains many biologically active peptides and enzymes that are effective in the fight against diseases of various etiologies. The history of the use of bee venom for medicinal purposes dates back thousands of years. There are many reports in the literature on the pharmacological properties of bee venom and/or its main components, e.g., anti-arthritic, anti-inflammatory, anti-microbial or neuroprotective properties. In addition, both crude venom and melittin exhibit cytotoxic activity against a wide range of tumor cells, with significant anti-metastatic activity in pre-clinical studies. Due to the constantly increasing incidence of cancer, the development of new therapeutic strategies in oncology is a particular challenge for modern medicine. A review paper discusses the various properties of bee venom with an emphasis on its anticancer properties. For this purpose, the PubMed database was searched, and publications related to "bee", "venom", "cancer" from the last 10 years were selected.

12.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513195

RESUMO

Usnic acid (UA) is a compound with multiple biological activities that make it useful in various industries, e.g., pharmaceutical, cosmetic, dentistry, and agricultural sectors. Lichens are the primary source of UA, which is primarily extracted using acetone. This study aimed to investigate the solubility of UA in numerous natural deep eutectic solvents (NADESs) and use a mixture of thymol and camphor as a NADES in the optimization of the UA extraction process with the design of experiments method. For numerical optimization, the following parameters were employed in the experiment to confirm the model: a camphor-to-thymol ratio of 0.3, a liquid-to-solid ratio of 60, and a time of 30 min. The obtained experimental results aligned well with the predicted values, with the mean experimental value falling within the confidence interval, exhibiting deviations between 11.93 and 14.96. By employing this model, we were able to optimize the extraction procedure, facilitating the isolation of approximately 91% of the total UA content through a single extraction, whereas a single acetone extraction yielded only 78.4% of UA.


Assuntos
Solventes Eutéticos Profundos , Timol , Solventes , Acetona , Cânfora , Extratos Vegetais
13.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513294

RESUMO

Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/química , Peróxido de Hidrogênio/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glicosídeos/farmacologia , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
14.
Sci Rep ; 13(1): 11902, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488427

RESUMO

The influence of arbuscular mycorrhiza fungi (AMF) inoculation, seaweed extract (SWE) foliar use, and their co-applications were evaluated on the growth-associated traits, antioxidant potential, essential oil profile, and the nutrients content of fennel plants. A factorial experiment was conducted as a completely randomized design with two factors and four replications in the greenhouse. The factors were: AMF inoculation (not inoculated and inoculated with 5 g kg-1) and SWE foliar application (0, 0.5, 1.5, or 3 g L-1). The highest root colonization percentage was recorded in plants treated with AMF + 3 g L-1 of SWE. The top recorded plant height, leaf number, leaf dry weight, biomass, thousand seed weight (TSW), total soluble proteins and total soluble carbohydrates content, antioxidant activity, and essential oil content belonged to AMF + 3 g L-1 of SWE. Furthermore, the co-application of AMF + SWE resulted in a considerable enhancement of the photosynthetic pigments content and, in N, P, K, Fe, Zn, and Mn contents in the shoots and roots. The GC-FID and GC-MS analysis revealed that (E)-anethole (73.28-76.18%), fenchone (5.94-8.26%), limonene (4.64-6.58%), methyl chavicol (2.91-3.18%), and (Z)-ß-ocimene (1.36-2.01%) were the principal essential oil constituents. The top (E)-anethole and fenchone contents were obtained by AMF + SWE. Altogether, the simultaneous application of AMF and SWE could be introduced as an environment-friendly strategy to reach reliable growth responses, especially in fennel plants' enriched with some precious essential oil constituents.


Assuntos
Foeniculum , Micorrizas , Óleos Voláteis , Alga Marinha , Antioxidantes , Carboidratos da Dieta , Extratos Vegetais
15.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175385

RESUMO

Soybeans are commonly known as a valuable source of biologically active compounds including isoflavones as well as allantoin and alpha-hydroxy acids. Since these compounds exhibit skin therapeutic effects, they are widely used in the cosmetic and pharmaceutical industries. The presented paper shows the optimization of three solvent systems (ethanol, water, and 1,3-propanediol) to increase the extraction efficiency of isoflavones (daidzin, genistin, 6″-O-malonyldaidzin, 6″-O-malonylglycitin, 6″-O-malonylgenistin), allantoin, and alpha-hydroxy acids (citric acid, malic acid) from soybean leaves. A simplex centroid mixture design for three solvents with interior points was applied for the experimental plan creation. Based on the obtained results of metabolite extraction yield in relation to solvent composition, polynomial regression models were developed. All models were significant, with predicted R-squared values between 0.77 and 0.99, while in all cases the model's lack of fit was not significant. The optimal mixture composition enabling the maximization of extraction efficiency was as follows: 32.9% ethanol, 53.9% water, and 13.3% propanediol (v/v/v). Such a mixture composition provided the extraction of 99%, 91%, 100%, 92%, 99%, 70%, 92%, and 69% of daidzin, genistin, 6″-O-malonyldaidzin, 6″-O-malonylglycitin, 6″-O-malonylgenistin, allantoin, citric acid, and malic acid, respectively. The solvent mixture composition developed provides a good extraction efficiency of the metabolites from soybean leaves and high antioxidant properties.


Assuntos
Glycine max , Isoflavonas , Glycine max/metabolismo , Alantoína , Isoflavonas/metabolismo , Malatos , Solventes , Etanol , Água , Ácido Cítrico
16.
Ann Med ; 55(1): 1018-1028, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36896848

RESUMO

Metastases to the central nervous system (CNS) in patients with non-small cell lung cancer constitute an extremely difficult clinical problem, and their occurrence is associated with a poor prognosis. Due to the existence of the blood-brain barrier (BBB) and the action of proteins responsible for the transport of drugs, e.g. P-glycoprotein (P-gp), the penetration of drugs into the CNS is insufficient. Until recently, the only method of CNS metastases treatment was radiotherapy and neurosurgery. The advancement of molecular biology allowed discover targets for molecularly targeted therapies. One of targets is abnormal anaplastic lymphoma kinase, which results from the rearrangement of the ALK gene in patients with non-small cell lung cancer (NSCLC). ALK rearrangement occurs in only about 4.5% of NSCLC patients, but its presence favors brain metastases. The ALK inhibitors (ALKi) were modified to obtain molecules with high ability to penetrate into the CNS. This was achieved by modifying the structure of individual molecules, which became, inter alia, less substrates for P-gp. These modifications caused that less than 10% of patients experience progression in CNS during new ALK inhibitors treatment. This review summarizes the knowledge about the action of BBB, the pharmacodynamics and pharmacokinetics of ALKi, with particular emphasis on their ability to penetrate the CNS and the intracranial activity of individual drugs from different generations of ALK inhibitors.


ALK gene rearrangement favors the development of central nervous system (CNS) metastases in patients with NSCLC. New generations of ALK inhibitors penetrate the CNS and induce an intracranial response and protect against new brain lesions.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Sistema Nervoso Central
17.
Sci Total Environ ; 864: 160653, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529391

RESUMO

The accumulation of allantoin and trace metals (TMs) in nine moss species was examined after the exposure to stress conditions. Both the environmental anthropopressure effect and laboratory-simulated stress conditions were monitored. Moss samples were collected from different locations, i.e. a non-TM contaminated area, an urban area, and a metalliferous area. The effect of Cd, Pb, Hg, Ni, Zn, salinity, and an acidic environment on the allantoin content was tested. Principal component analysis was performed to reveal the relationship between samples of different origin. Large differences in the metal and allantoin accumulation capability of mosses were noted between samples harvested from the different locations. Seven species were considered as potential metal accumulators, as they exhibited tolerance to elevated levels of heavy metals. The observed TM effect on the allantoin accumulation indicated TM pollution as an important environmental factor that can significantly influence the content of this compound in mosses. Further studies on the contribution of various environmental factors and individual characteristics of plant species are highly expected to recognize the trend in the accumulation of specialized metabolites and TMs in response to hazardous growth conditions.


Assuntos
Briófitas , Mercúrio , Metais Pesados , Oligoelementos , Alantoína/análise , Metais Pesados/análise , Poluição Ambiental/análise , Mercúrio/análise , Oligoelementos/análise , Monitoramento Ambiental
18.
Ind Crops Prod ; 187: 115338, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35846513

RESUMO

Carlina acaulis plant is a potential target for the industrial production of phytochemicals that display applicability in pharmacy and medicine. The dry roots of C. acaulis contain up to 2 % of essential oil, the main component (up to 99 %) of which is carlina oxide [2-(3-phenylprop-1-ynyl)furan]. This compound shows multidirectional biological activity, including antibacterial and antifungal properties. Here, we evaluated the capacity of carlina oxide to inhibit the interaction between SARS-CoV-2 and its human receptor in vitro and in silico. A bioluminescent immunoassay was used to study the interaction between the receptor binding domain (RBD) of viral spike protein and the human angiotensin-converting enzyme 2 (ACE2), which serves as a receptor for viral entry. A dose-effect relationship was demonstrated, and a concentration of carlina oxide causing half-maximal inhibition (IC50) of the RBD:ACE2 interaction was determined to be equal to 234.2 µg/mL. Molecular docking suggested the presence of carlina oxide binding sites within the RBD and at the interface between RBD and ACE2. Finally, this study expands the list of potential applications of C. acaulis as a crop species.

19.
Cells ; 11(14)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35883661

RESUMO

Carnivorous plants are unique due to their ability to attract small animals or protozoa, retain them in specialized traps, digest them, and absorb nutrients from the dissolved prey material; however, to this end, these plants need a special secretion-digestive system (glands). A common trait of the digestive glands of carnivorous plants is the presence of transfer cells. Using the aquatic carnivorous species Aldrovanda vesiculosa, we showed carnivorous plants as a model for studies of wall ingrowths/transfer cells. We addressed the following questions: Is the cell wall ingrowth composition the same between carnivorous plant glands and other plant system models? Is there a difference in the cell wall ingrowth composition between various types of gland cells (glandular versus endodermoid cells)? Fluorescence microscopy and immunogold electron microscopy were employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The cell wall ingrowths were enriched with arabinogalactan proteins (AGPs) localized with the JIM8, JIM13, and JIM14 epitopes. Both methylesterified and de-esterified homogalacturonans (HGs) were absent or weakly present in the wall ingrowths in transfer cells (stalk cells and head cells of the gland). Both the cell walls and the cell wall ingrowths in the transfer cells were rich in hemicelluloses: xyloglucan (LM15) and galactoxyloglucan (LM25). There were differences in the composition between the cell wall ingrowths and the primary cell walls in A. vesiculosa secretory gland cells in the case of the absence or inaccessibility of pectins (JIM5, LM19, JIM7, LM5, LM6 epitopes); thus, the wall ingrowths are specific cell wall microdomains. Even in the same organ (gland), transfer cells may differ in the composition of the cell wall ingrowths (glandular versus endodermoid cells). We found both similarities and differences in the composition of the cell wall ingrowths between the A. vesiculosa transfer cells and transfer cells of other plant species.


Assuntos
Droseraceae , Animais , Parede Celular/metabolismo , Epitopos/metabolismo , Galactose/metabolismo , Glucanos
20.
J Hazard Mater ; 436: 129232, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739752

RESUMO

Copper stress in the presence of exogenous methyl jasmonate and Serratia plymuthica in a complete trifactorial design with copper (0, 50 µM), methyl jasmonate (0, 1, 10 µM) and Serratia plymuthica (without and with inoculation) was studied on the physiological parameters of Phaseolus coccineus. Copper application reduced biomass and allantoin content, but increased chlorophyll and carotenoids contents as well as catalase and peroxidases activities. Jasmonate did not modify biomass and organic acids levels under copper treatment, but additional inoculation elevated biomass and content of tartrate, malate and succinate. Jasmonate used alone or in combination with bacteria increased superoxide dismutase activity in copper application. With copper, allantoin content elevated at lower jasmonate concentration, but with additional inoculation - at higher jasmonate concentration. Under copper stress, inoculation resulted in higher accumulation of tartrate, malate and citrate contents in roots, which corresponded with lower allantoin concentration in roots. Combined with copper, inoculation reduced catalase and guaiacol peroxidase activities, whereas organic acids content was higher. Under metal stress, with bacteria, jasmonate reduced phenolics content, elevated superoxide dismutase and guaiacol peroxidase activities. The data indicate that jasmonate and S. plymuthica affected most physiological parameters of P. coccineus grown with copper and revealed some effect on biomass.


Assuntos
Cobre , Phaseolus , Acetatos , Alantoína/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Cobre/toxicidade , Ciclopentanos , Malatos/farmacologia , Estresse Oxidativo , Oxilipinas , Raízes de Plantas/metabolismo , Serratia , Solo , Superóxido Dismutase/metabolismo , Svalbard , Tartaratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...