Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 154-163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958188

RESUMO

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form ß-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Šresolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.


Assuntos
Regiões Determinantes de Complementaridade , Fragmentos Fab das Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Modelos Moleculares , Animais , Bovinos , Cadeias Pesadas de Imunoglobulinas/química , Cristalografia por Raios X , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Conformação Proteica
2.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828292

RESUMO

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...