Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cell Biol ; 153(5): 1085-96, 2001 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-11381092

RESUMO

The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Divisão Celular , Núcleo Celular/genética , Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/genética , Teste de Complementação Genética , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/química , Mitocôndrias/enzimologia , Proteínas Mitocondriais , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato
2.
EMBO J ; 20(6): 1281-8, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11250894

RESUMO

Oxa1p is a member of the conserved Oxa1/YidC/Alb3 protein family involved in the membrane insertion of proteins. Oxa1p has been shown previously to directly facilitate the export of the N-terminal domains of membrane proteins across the inner membrane to the intermembrane space of mitochondria. Here we report on a general role of Oxa1p in the membrane insertion of proteins. (i) The function of Oxa1p is not limited to the insertion of membrane proteins that undergo N-terminal tail export; rather, it also extends to the insertion of other polytopic proteins such as the mitochondrially encoded Cox1p and Cox3p proteins. These are proteins whose N-termini are retained in the mitochondrial matrix. (ii) Oxa1p interacts directly with these substrates prior to completion of their synthesis. (iii) The interaction of Oxa1p with its substrates is particularly strong when nascent polypeptide chains are inserted into the inner membrane, suggesting a direct function of Oxa1p in co-translational insertion from the matrix. Taken together, we conclude that the Oxa1 complex represents a general membrane protein insertion machinery in the inner membrane of mitochondria.


Assuntos
Proteínas de Transporte/metabolismo , DNA Mitocondrial/genética , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Potenciais da Membrana , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo , Leveduras
4.
J Biol Chem ; 275(24): 18093-8, 2000 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-10764779

RESUMO

The mitochondrial electron transport chain complexes are large multisubunit complexes embedded in the inner membrane. We report here that in the yeast Saccharomyces cerevisiae, the cytochrome bc(1) and cytochrome c oxidase complexes co-exist as a larger complex of approximately 1000 kDa in the mitochondrial membrane. Following solubilization with a mild detergent, the cytochrome bc(1)-cytochrome c oxidase complex remains stable. It was analyzed using the techniques of gel filtration and blue native-polyacrylamide gel electrophoresis. Direct physical association of subunits of the cytochrome bc(1) complex with those of the cytochrome c oxidase complex was verified by co-immunoprecipitation analysis. Our data indicate that the cytochrome bc(1) complex is exclusively in association with the cytochrome c oxidase complex in yeast mitochondria. We term this complex the cytochrome bc(1)-cytochrome c oxidase supracomplex.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Membranas Intracelulares/enzimologia , Substâncias Macromoleculares , Peso Molecular , Conformação Proteica , Leveduras
5.
J Biol Chem ; 275(7): 4571-8, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10671482

RESUMO

We have identified Cox20p, a 23.8-kDa protein of the mitochondrial inner membrane that is involved in the biogenesis of the yeast cytochrome oxidase complex. Cytochrome oxidase subunit 2 (Cox2p) accumulates as a precursor in cox20 mutants, suggesting a defect in biogenesis of this mitochondrially encoded protein. The inability of cox20 mutants to process the subunit 2 precursor (pCox2p) is not due to impaired export of the protein across the inner membrane or to an inactive Imp1p/Imp2p peptidase. Rather, Cox20p specifically binds the newly synthesized pCox2p, a step required to present the exported pCox2p as a substrate to the Imp1p peptidase. All of the endogenous pCox2p accumulated in an Deltaimp1 mutant, and a small fraction of Cox2p in wild type yeast, is detected in a complex with Cox20p. Following maturation Cox2p remained associated with Cox20p, prior to assembling into the cytochrome oxidase complex. We propose that Cox20p acts as a membrane-bound chaperone necessary for cleavage of pCox2p and for interaction of the mature protein with other subunits of cytochrome oxidase in a later step of the assembly process.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
EMBO J ; 18(19): 5226-33, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10508156

RESUMO

Bcs1p, a mitochondrial protein and member of the conserved AAA protein family, is involved in the biogenesis of the cytochrome bc(1) complex. We demonstrate here that Bcs1p is directly required for the assembly of the Rieske FeS and Qcr10p proteins into the cytochrome bc(1) complex. Bcs1p binds to a precomplex in the assembly pathway of the cytochrome bc(1) complex. Binding of Bcs1p to and release from this assembly intermediate is driven by ATP hydrolysis. We propose that Bcs1p acts as an ATP-dependent chaperone, maintaining the precomplex in a competent state for the subsequent assembly of the Rieske FeS and Qcr10p proteins.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mutagênese
7.
J Biol Chem ; 274(30): 20937-42, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10409639

RESUMO

We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.


Assuntos
DNA Helicases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , DNA Helicases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Saccharomyces cerevisiae/ultraestrutura
8.
J Biol Chem ; 274(28): 19617-22, 1999 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-10391898

RESUMO

Export of N-terminal tails of mitochondrial inner membrane proteins from the mitochondrial matrix is a membrane potential-dependent process, mediated by the Oxa1p translocation machinery. The hydrophilic segments of these membrane proteins, which undergo export, display a characteristic charge profile where intermembrane space-localized segments bear a net negative charge, whereas those remaining in the matrix have a net positive one. Using a model protein, preSu9(1-112)-dihydrofolate reductase (DHFR), which undergoes Oxa1p-mediated N-tail export, we demonstrate here that the net charge of N- and C-flanking regions of the transmembrane domain play a critical role in determining the orientation of the insertion process. The N-tail must bear a net negative charge to be exported to the intermembrane space. Furthermore, a net positive charge of the C-terminal region supports this N-tail export event. These data provide experimental evidence that protein export in mitochondria adheres to the "positive-inside" rule, described for sec-independent sorting of membrane proteins in prokaryotes. We propose here that the importance of a charge profile reflects a need for specific protein-protein interactions to occur in the export reaction, presumably at the level of the Oxa1p export machinery.


Assuntos
Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Proteínas de Membrana/química , Proteínas Mitocondriais , Mutagênese , Neurospora crassa/enzimologia , Proteínas Nucleares/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae , Eletricidade Estática , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética
9.
J Biol Chem ; 274(1): 36-40, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9867807

RESUMO

The subunit composition of the mitochondrial ATP synthase from Saccharomyces cerevisiae was analyzed using blue native gel electrophoresis and high resolution SDS-polyacrylamide gel electrophoresis. We report here the identification of a novel subunit of molecular mass of 6,687 Da, termed subunit j (Su j). An open reading frame of 127 base pairs (ATP18), which encodes for Su j, was identified on chromosome XIII. Su j does not display sequence similarity to ATP synthase subunits from other organisms. Data base searches, however, identified a potential homolog from Schizosaccharomyces pombe with 51% identity to Su j of S. cerevisiae. Su j, a small protein of 59 amino acid residues, has the characteristics of an integral inner membrane protein with a single transmembrane segment. Deletion of the ATP18 gene encoding Su j led to a strain (Deltasu j) completely deficient in oligomycin-sensitive ATPase activity and unable to grow on nonfermentable carbon sources. The presence of Su j is required for the stable expression of subunits 6 and f of the F0 membrane sector. In the absence of Su j, spontaneously arising rho- cells were observed that lacked also ubiquinol-cytochrome c reductase and cytochrome c oxidase activities. We conclude that Su j is a novel and essential subunit of yeast ATP synthase.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida/métodos , Deleção de Genes , Membranas Intracelulares/enzimologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Homologia de Sequência de Aminoácidos
10.
EMBO J ; 17(24): 7170-8, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9857174

RESUMO

Using the technique of blue native gel electrophoresis, the oligomeric state of the yeast mitochondrial F1F0-ATP synthase was analysed. Solubilization of mitochondrial membranes with low detergent to protein ratios led to the identification of the dimeric state of the ATP synthase. Analysis of the subunit composition of the dimer, in comparison with the monomer, revealed the presence of three additional small proteins. These dimer-specific subunits of the ATP synthase were identified as the recently described subunit e/Tim11 (Su e/Tim11), the putative subunit g homolog (Su g) and a new component termed subunit k (Su k). Although, as shown here, these three proteins are not required for the formation of enzymatically active ATP synthase, Su e/Tim11 and Su g are essential for the formation of the dimeric state. Su e/Tim11 appears to play a central role in this dimerization process. The dimer-specific subunits are associated with the membrane bound F0-sector. The F0-sector may thereby be involved in the dimerization of two monomeric F1F0-ATP synthase complexes. We speculate that the F1F0-ATP synthase of yeast, like the other complexes of oxidative phosphorylation, form supracomplexes to optimize transduction of energy and to enhance the stability of the complex in the membrane.


Assuntos
Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Dimerização , Eletroforese/métodos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Mutação , ATPases Translocadoras de Prótons/biossíntese , ATPases Translocadoras de Prótons/genética , Análise de Sequência , Deleção de Sequência , Propriedades de Superfície
11.
EMBO J ; 17(22): 6508-15, 1998 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-9822596

RESUMO

Nuclear-encoded mitochondrial matrix proteins in most cases contain N-terminal targeting signals and are imported in a linear N- to C-terminal (N-->C) fashion. We asked whether import can also occur in a C- to N-terminal direction (C-->N). We placed targeting signals at the C-terminus of passenger proteins. Import did occur in this 'backwards' fashion. It paralleled that of the 'normal' N-->C mechanism in terms of efficiency, rate, energetic requirements and ability to mediate unfolding and refolding during and following import of protein containing a folded domain. Furthermore, this reaction was mediated by the TIM17-23 machinery. The import pathway taken by certain inner-membrane proteins contains elements of such a C-->N translocation pathway, as they are targeted to mitochondria by internal targeting signals. These internal targeting signals appear to form loop structures together with neighbouring transmembrane segments, and penetrate the inner membrane in a membrane-potential-dependent manner. The dimeric TIM17-23 complex, together with mt-Hsp70, acts on both sides of the loop structure to facilitate their translocation into the matrix. On one side of the loop import occurs in the common N-->C direction, whereas the translocation of the other side involves the novel C-->N import direction. We conclude therefore that the mitochondrial import machinery displays no preference for the directionality of the import process.


Assuntos
Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Bases , Transporte Biológico , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Precursores de Proteínas/química , Sinais Direcionadores de Proteínas/química , Sinais Direcionadores de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
12.
J Biol Chem ; 273(14): 8040-7, 1998 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-9525904

RESUMO

D-Lactate dehydrogenase (D-LD) is located in the inner membrane of mitochondria. It spans the membrane once in an Nin-Cout orientation with the bulk of the protein residing as a folded domain in the intermembrane space. D-LD is synthesized as a precursor with an N-terminal cleavable presequence and is imported into the mitochondria in a Deltapsi-dependent, but mt-Hsp70-independent manner. Upon import in vitro D-LD folds in the intermembrane space to attain a conformation indistinguishable from endogenous D-LD. Sorting of D-LD to the inner membrane is directed by a composite topogenic signal consisting of the hydrophobic transmembrane segment and a cluster of charged amino acids C-terminal to it. We propose a model for the mode of operation of the sorting signal of D-LD. This model also accounts for the driving force of translocation across the outer membrane, in the apparent absence of mt-Hsp70-dependent assisted import and involves the folding of the D-LD in the intermembrane space.


Assuntos
L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases , Mitocôndrias/enzimologia , Saccharomyces cerevisiae/enzimologia , Membrana Celular/metabolismo , Metabolismo Energético , L-Lactato Desidrogenase/química , Dobramento de Proteína , Saccharomyces cerevisiae/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 95(5): 2250-5, 1998 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-9482871

RESUMO

A number of nuclear encoded inner membrane proteins of mitochondria span the membrane in such a manner that their N termini are located in the intermembrane space. Many of these proteins attain this membrane orientation by undergoing an export step from the matrix across the inner membrane. This export process, which resembles bacterial N-tail export from energetic and topogenic signal requirements, is facilitated by Oxa1p, a protein that has homologues throughout prokaryotes and eukaryotes. Oxa1p, as we have previously shown, is required to export the N and C termini of the mitochondrially encoded pCoxII to the intermembrane space. We demonstrate here that imported nuclear encoded proteins physically interact with Oxa1p and depend on Oxa1p for efficient export of their N termini to the intermembrane space. Furthermore, Oxa1p interacts with nascent polypeptide chains synthesized in mitochondria, including the fully synthesized pCoxII and CoxIII species. Thus, Oxa1p represents a component of a general export machinery of the mitochondrial inner membrane.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Reagentes de Ligações Cruzadas , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas de Membrana/química , Proteínas Mitocondriais , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Biossíntese de Proteínas , Conformação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Tetra-Hidrofolato Desidrogenase/biossíntese , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Nature ; 391(6670): 912-5, 1998 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-9495346

RESUMO

Import of nuclear-encoded precursor proteins into mitochondria and their subsequent sorting into mitochondrial subcompartments is mediated by translocase enzymes in the mitochondrial outer and inner membranes. Precursor proteins carrying amino-terminal targeting signals are translocated into the matrix by the integral inner membrane proteins Tim23 and Tim17 in cooperation with Tim44 and mitochondrial Hsp70. We describe here the discovery of a new pathway for the transport of members of the mitochondrial carrier family and other inner membrane proteins that contain internal targeting signals. Two related proteins in the intermembrane space, Tim10/Mrs11 and Tim12/Mrs5, interact sequentially with these precursors and facilitate their translocation across the outer membrane, irrespective of the membrane potential. Tim10 and Tim12 are found in a complex with Tim22, which takes over the precursor and mediates its membrane-potential-dependent insertion into the inner membrane. This interaction of Tim10 and Tim12 with the precursors depends on the presence of divalent metal ions. Both proteins contain a zinc-finger-like motif with four cysteines and bind equimolar amounts of zinc ions.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Transporte Biológico , Cátions Bivalentes , Clonagem Molecular , Reagentes de Ligações Cruzadas , Membranas Intracelulares/metabolismo , Metais/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 273(3): 1469-76, 1998 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-9430684

RESUMO

Proteins of the mitochondrial inner membrane display a wide variety of orientations, many spanning the membrane more than once. Some of these proteins are synthesized with NH2-terminal cleavable targeting sequences (presequences) whereas others are targeted to mitochondria via internal signals. Here we report that two distinct mitochondrial targeting signals can be present in precursors of inner membrane proteins, an NH2-terminal one and a second, internal one. Using cytochrome c1 as a model protein, we demonstrate that these two mitochondrial targeting signals operate independently of each other. The internal targeting signal, consisting of a transmembrane segment and a stretch of positively charged amino acid residues directly following it, initially directs the translocation of the preprotein into the intermembrane space. It then inserts into the inner membrane from the intermembrane space side in a delta psi-dependent manner and thereby determines the orientation the protein attains in the inner membrane. Analysis of a number of other presequence-containing protein of the inner membrane suggest that they too contain such internal targeting signals.


Assuntos
Citocromos c1/metabolismo , Mitocôndrias/enzimologia , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/metabolismo , Cinética , Metaloendopeptidases/metabolismo , Conformação Proteica , Saccharomyces cerevisiae , Peptidase de Processamento Mitocondrial
16.
J Biol Chem ; 272(28): 17410-5, 1997 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-9211883

RESUMO

The requirement of mitochondrial hsp70 (mt-hsp70) for the import of a series of preproteins containing hydrophobic sorting signals into isolated yeast mitochondria was investigated. Here we demonstrate that the presence of such a sorting signal in proximity to the N-terminal matrix-targeting sequence of a preprotein can secure a translocating polypeptide chain in the import channel in a manner that does not require mt-hsp70 activity. Trapping the translocating chain in this fashion leads to efficient processing by the mitochondrial processing peptidase and to complete translocation across the outer mitochondrial membrane into the intermembrane space. These mt-hsp70-independent effects appear to be exerted at the level of the inner membrane through an interaction of the hydrophobic core of the sorting signal with component(s) of the translocase of the inner membrane. Hydrophobic sorting signals of inner membrane proteins inserted into the membrane from the matrix, as well as those of intermembrane space proteins, are capable of causing this mt-hsp70-independent stabilization, demonstrating that this phenomenon is not unique to those preproteins normally sorted to the intermembrane space.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Divisão Celular/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Metotrexato/farmacologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Saccharomyces cerevisiae , Tetra-Hidrofolato Desidrogenase/metabolismo , Peptidase de Processamento Mitocondrial
17.
FEBS Lett ; 411(2-3): 195-200, 1997 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-9271204

RESUMO

We report here the identification of the novel subunit of the mitochondrial F1F0-ATPase from Saccharomyces cerevisiae, ATPase subunit e. Yeast ATPase subunit e displays significant similarities in both amino acid sequence, properties (hydropathy and predicted coiled-coil structure) and orientation in the inner membrane, with previously identified mammalian ATPase subunit e proteins. Estimation of its native molecular mass and ability to be co-immunoprecipitated with a subunit of the F1-ATPase, demonstrate that subunit e is a subunit of the F1F0-ATPase. Stable expression of subunit e requires the presence of the mitochondrially encoded subunits of the F0-ATPase. Subunit e had been previously identified as Tim11 and was proposed to be involved in the process of sorting of proteins to the mitochondrial inner membrane.


Assuntos
Proteínas de Transporte/química , Proteínas de Membrana/química , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatografia em Gel , Cromossomos Fúngicos/genética , Clonagem Molecular , Regulação para Baixo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Testes de Precipitina , Regiões Promotoras Genéticas , Conformação Proteica , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Análise de Sequência , Homologia de Sequência de Aminoácidos
18.
J Bacteriol ; 179(12): 4003-12, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9190818

RESUMO

We have cloned the secA gene of the alpha-subclass purple bacterium Rhodobacter capsulatus, a close relative to the mitochondrial ancestor, and purified the protein after expression in Escherichia coli. R. capsulatus SecA contains 904 amino acids with 53% identity to E. coli and 54% identity to Caulobacter crescentus SecA. In contrast to the nearly equal partitioning of E. coli SecA between the cytosol and plasma membrane, R. capsulatus SecA is recovered predominantly from the membrane fraction. A SecA-deficient, cell-free synthesis-translocation system prepared from R. capsulatus is used to demonstrate translocation activity of the purified R. capsulatus SecA. This translocation activity is then compared to that of the E. coli counterpart by using various precursor proteins and inside-out membrane vesicles prepared from both bacteria. We find a preference of the R. capsulatus SecA for the homologous membrane vesicles whereas E. coli SecA is active with either type of membrane. Furthermore, the two SecA proteins clearly select between distinct precursor proteins. In addition, we show here for the first time that a bacterial c-type cytochrome utilizes the canonical, Sec-dependent export pathway.


Assuntos
Adenosina Trifosfatases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Precursores de Proteínas/metabolismo , Rhodobacter capsulatus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Grupo dos Citocromos c/biossíntese , Citocromos c2 , Dados de Sequência Molecular , Canais de Translocação SEC , Proteínas SecA
19.
EMBO J ; 16(9): 2217-26, 1997 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9171337

RESUMO

Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.


Assuntos
Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Carbonatos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Proteínas de Choque Térmico HSP70/metabolismo , Potenciais da Membrana , Metaloendopeptidases/metabolismo , Camundongos , Proteínas Mitocondriais , Modelos Moleculares , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Peptidase de Processamento Mitocondrial
20.
FEBS Lett ; 418(3): 367-70, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9428747

RESUMO

Oxa1p is a mitochondrial protein reported to be involved in the assembly of the cytochrome oxidase complex. In the absence of a functional Oxa1p, subunit II of the cytochrome oxidase accumulates as its precursor form (pCoxII). Using mitochondria isolated from a yeast strain bearing a temperature sensitive mutation in the Oxa1p, pet ts1402, we have analyzed the function of the Oxa1p protein. We demonstrate that the accumulation of pCoxII in the pet ts1402 mitochondria does not reflect a compromised Imp1p activity in this mutant. Furthermore, measurement of the membrane potential has shown it to be sufficient to support the export of CoxII from the matrix. Rather, we found that newly synthesized pCoxII accumulates in the matrix of the pet ts1402 mitochondria, because export across the inner membrane is inhibited in the pet ts1402 mitochondria. In conclusion, Oxa1p mediates the export of the N- and C-termini of the mitochondrially encoded subunit II of cytochrome oxidase from the matrix to the intermembrane space.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais , Proteínas Nucleares/genética , Peptídeos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...