Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(9): 5917-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623816

RESUMO

We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we show that the C-terminal tail peptide region of MLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearing MLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy.


Assuntos
Integrases/química , Vírus da Leucemia Murina/genética , Proteínas de Ligação a RNA/química , Proteínas Virais/química , Integração Viral , Sequência de Aminoácidos , Sítios de Ligação , Ilhas de CpG , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA , Deleção de Sequência , Fatores de Transcrição , Sítio de Iniciação de Transcrição
2.
J Bacteriol ; 193(3): 723-33, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21097612

RESUMO

The in vivo expression levels of four rRNA promoter pairs (rrnp(1)p(2)) of Bacillus subtilis were determined by employing single-copy lacZ fusions integrated at the amyE locus. The rrnO, rrnJ, rrnD, and rrnB promoters displayed unique growth rate regulation and stringent responses. Both lacZ activity and mRNA levels were highest for rrnO under all growth conditions tested, while rrnJ, rrnB, and rrnD showed decreasing levels of activity. During amino acid starvation induced by serine hydroxamate (SHX), only the strong rrnO and rrnJ promoters demonstrated stringent responses. Under the growth conditions used, the rrn promoters showed responses similar to the responses to carbon source limitation induced by α-methyl glucoside (α-MG). The ratio of P2 to P1 transcripts, determined by primer extension analysis, was high for the strong rrnO and rrnJ promoters, while only P2 transcripts were detected for the weak rrnD and rrnB promoters. Cloned P1 or P2 promoter fragments of rrnO or rrnJ were differentially regulated. In wild-type (relA(+)) and suppressor [relA(S)] strains under the conditions tested, only P2 responded to carbon source limitation by a decrease in RNA synthesis, correlating with an increase in (p)ppGpp levels and a decrease in the GTP concentration. The weak P1 promoter elements remain relaxed in the three genetic backgrounds [relA(+), relA, relA(S)] in the presence of α-MG. During amino acid starvation, P2 was stringently regulated in relA(+) and relA(S) cells, while only rrnJp(1) was also regulated, but to a lesser extent. Both the relA(+) and relA(S) strains showed (p)ppGpp accumulation after α-MG treatment but not after SHX treatment. These data reveal the complex nature of B. subtilis rrn promoter regulation in response to stress, and they suggest that the P2 promoters may play a more prominent role in the stringent response.


Assuntos
Bacillus subtilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA Ribossômico/biossíntese , Estresse Fisiológico , Fusão Gênica Artificial , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Genes Reporter , Guanosina Tetrafosfato , Transcrição Gênica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Viruses ; 2(5): 1110-45, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21637732

RESUMO

Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.

4.
Retrovirology ; 5: 48, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18554410

RESUMO

BACKGROUND: A critical step for retroviral replication is the stable integration of the provirus into the genome of its host. The viral integrase protein is key in this essential step of the retroviral life cycle. Although the basic mechanism of integration by mammalian retroviruses has been well characterized, the factors determining how viral integration events are targeted to particular regions of the genome or to regions of a particular DNA structure remain poorly defined. Significant questions remain regarding the influence of host proteins on the selection of target sites, on the repair of integration intermediates, and on the efficiency of integration. RESULTS: We describe the results of a yeast two-hybrid screen using Moloney murine leukemia virus integrase as bait to screen murine cDNA libraries for host proteins that interact with the integrase. We identified 27 proteins that interacted with different integrase fusion proteins. The identified proteins include chromatin remodeling, DNA repair and transcription factors (13 proteins); translational regulation factors, helicases, splicing factors and other RNA binding proteins (10 proteins); and transporters or miscellaneous factors (4 proteins). We confirmed the interaction of these proteins with integrase by testing them in the context of other yeast strains with GAL4-DNA binding domain-integrase fusions, and by in vitro binding assays between recombinant proteins. Subsequent analyses revealed that a number of the proteins identified as Mo-MLV integrase interactors also interact with HIV-1 integrase both in yeast and in vitro. CONCLUSION: We identify several proteins interacting directly with both MoMLV and HIV-1 integrases that may be common to the integration reaction pathways of both viruses. Many of the proteins identified in the screen are logical interaction partners for integrase, and the validity of a number of the interactions are supported by other studies. In addition, we observe that some of the proteins have documented interactions with other viruses, raising the intriguing possibility that there may be common host proteins used by different viruses. We undertook this screen to identify host factors that might affect integration target site selection, and find that our screens have generated a wealth of putative interacting proteins that merit further investigation.


Assuntos
Cromatina/virologia , Integrases/metabolismo , Vírus da Leucemia Murina de Moloney/enzimologia , Fatores de Transcrição/metabolismo , Integração Viral , Cromatina/química , DNA Viral/genética , DNA Viral/fisiologia , Proteínas de Ligação a DNA/metabolismo , Vetores Genéticos , Integrases/fisiologia , Vírus da Leucemia Murina de Moloney/genética , Vírus da Leucemia Murina de Moloney/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Técnicas do Sistema de Duplo-Híbrido
5.
Proc Natl Acad Sci U S A ; 101(25): 9315-20, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15199178

RESUMO

Recombination between moderately divergent DNA sequences is impaired compared with identical sequences. In yeast, an HO endonuclease-induced double-strand break can be repaired by single-strand annealing (SSA) between flanking homologous sequences. A 3% sequence divergence between 205-bp sequences flanking the double-strand break caused a 6-fold reduction in repair compared with identical sequences. This reduction in heteroduplex rejection was suppressed in a mismatch repair-defective msh6 Delta strain and partially suppressed in an msh2 separation-of-function mutant. In mlh1 Delta strains, heteroduplex rejection was greater than in msh6 Delta strains but less than in wild type. Deleting PMS1, MLH2,or MLH3 had no effect on heteroduplex rejection, but a pms1 Delta mlh2 Delta mlh3 Delta triple mutant resembled mlh1 Delta. However, correction of the mismatches within heteroduplex SSA intermediates required PMS1 and MLH1 to the same extent as MSH2 and MSH6. An SSA competition assay in which either diverged or identical repeats can be used for repair showed that heteroduplex DNA is likely to be unwound rather than degraded. This conclusion is supported by the finding that deleting the SGS1 helicase also suppressed heteroduplex rejection.


Assuntos
Pareamento Incorreto de Bases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Ácidos Nucleicos Heteroduplexes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genótipo , Proteínas MutL , Proteína 2 Homóloga a MutS , Mutagênese , RecQ Helicases , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
6.
J Mol Biol ; 331(1): 123-38, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12875840

RESUMO

In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.


Assuntos
Pareamento Incorreto de Bases/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Pegada de DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Proteína 2 Homóloga a MutS , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...