Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 531: 260-268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959264

RESUMO

SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Motivos de Aminoácidos , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Resistência a Myxovirus/genética , Fosforilação , Ligação Proteica , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Especificidade da Espécie
2.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931685

RESUMO

HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear. SAMHD1 has been reported to be able to degrade dNTPs and viral nucleic acids, which may both hamper HIV-1 reverse transcription. The relative contribution of these activities may differ in cycling and noncycling cells. Here, we show that inhibition of HIV-1 replication in monocyte-derived DCs (MDDCs) is associated with an increased expression of p21cip1/waf, a cell cycle regulator that is involved in the differentiation and maturation of DCs. Induction of p21 in MDDCs decreases the pool of dNTPs and increases the antiviral active isoform of SAMHD1. Although both processes are complementary in inhibiting HIV-1 replication, the antiviral activity of SAMHD1 in our primary cell model appears to be, at least partially, independent of its dNTPase activity. The reduction in the pool of dNTPs in MDDCs appears rather mostly due to a p21-mediated suppression of several enzymes involved in dNTP synthesis (i.e., RNR2, TYMS, and TK-1). These results are important to better understand the interplay between HIV-1 and DCs and may inform the design of new therapeutic approaches to decrease viral dissemination and improve immune responses against HIV-1.IMPORTANCE DCs play a key role in the induction of immune responses against HIV. However, HIV has evolved ways to exploit these cells, facilitating immune evasion and virus dissemination. We have found that the expression of p21, a cyclin-dependent kinase inhibitor involved in cell cycle regulation and monocyte differentiation and maturation, potentially can contribute to the inhibition of HIV-1 replication in monocyte-derived DCs through multiple mechanisms. p21 decreased the size of the intracellular dNTP pool. In parallel, p21 prevented SAMHD1 phosphorylation and promoted SAMHD1 dNTPase-independent antiviral activity. Thus, induction of p21 resulted in conditions that allowed the effective inhibition of HIV-1 replication through complementary mechanisms. Overall, p21 appears to be a key regulator of HIV infection in myeloid cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Dendríticas/virologia , Desoxirribonucleotídeos/biossíntese , HIV-1/fisiologia , Monócitos/virologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Antivirais/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Replicação do DNA , Células Dendríticas/fisiologia , Desoxirribonucleotídeos/química , HIV-1/imunologia , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Replicação Viral
3.
J Virol ; 88(22): 13436-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210184

RESUMO

UNLABELLED: Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. IMPORTANCE: Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that supports their zoonotic potential. Understanding of the adaptation of avian viruses to mammals strengthens public health efforts aimed at controlling influenza. In particular, it is critical to know how readily and through mutation to which functional components avian influenza viruses gain the ability to grow efficiently in humans. Our data show that as few as three mutations, in the PB2 and NP proteins, support robust growth of a low-pathogenic, H1N1 duck isolate in primary human respiratory cells.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/genética , Mutação , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Proteínas do Core Viral/genética , Proteínas Virais/genética , Adaptação Biológica , Animais , Linhagem Celular , Análise Mutacional de DNA , Patos , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Aviária/virologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Genética Reversa , Inoculações Seriadas , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...