Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14859, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937519

RESUMO

The spread of invasive species often follows a jump-dispersal pattern. While jumps are typically fostered by humans, local dispersal can occur due to the specific traits of a species, which are often poorly understood. This holds true for small hive beetles (Aethina tumida), which are parasites of social bee colonies native to sub-Saharan Africa. They have become a widespread invasive species. In 2017, a mark-release-recapture experiment was conducted in six replicates (A-F) using laboratory reared, dye-fed adults (N = 15,690). Honey bee colonies were used to attract flying small hive beetles at fixed spatial intervals from a central release point. Small hive beetles were recaptured (N = 770) at a maximum distance of 3.2 km after 24 h and 12 km after 1 week. Most small hive beetles were collected closest to the release point at 0 m (76%, replicate A) and 50 m (52%, replicates B to F). Temperature and wind deviation had significant effects on dispersal, with more small hive beetles being recaptured when temperatures were high (GLMM: slope = 0.99, SE = 0.17, Z = 5.72, P < 0.001) and confirming the role of wind for odour modulated dispersal of flying insects (GLMM: slope = - 0.39, SE = 0.14, Z = - 2.90, P = 0.004). Our findings show that the small hive beetles is capable of long-distance flights, and highlights the need to understand species specific traits to be considered for monitoring and mitigation efforts regarding invasive alien species.


Assuntos
Besouros , Voo Animal , Espécies Introduzidas , Animais , Besouros/fisiologia , Voo Animal/fisiologia , Distribuição Animal , Abelhas/fisiologia , Temperatura , Vento
2.
J Vis Exp ; (154)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31885370

RESUMO

Fragrances of many flower families have been sampled and the volatiles analyzed. Knowing the compounds that make up the fragrances can be an important step to conservation of flowers that are threatened or endangered. Because floral fragrance is critical for attracting pollinators, this method could be used to better understand or even enhance pollination. We present a protocol using a portable charcoal air filter and vacuum to collect floral fragrance volatiles, which are then analyzed by a GC-MS. By using this method, fragrance volatiles can be sampled using a non-destructive method with a machine that is easily transported. This methodology uses a rapid sampling procedure, cutting sampling time down from 2-3 hours to approximately 10 minutes. Using GC-MS, the fragrance compounds can be identified individually, based on authentic standards. The steps used for collecting fragrance and control data are presented, from material setup to collecting the data output.


Assuntos
Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química
3.
J Agric Food Chem ; 66(26): 6663-6674, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29895142

RESUMO

The last 2 decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe, and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires nontrivial planning. This planning can include an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system, correctly identifying and understanding unexpected observations that may occur during the experiment and thorough interpretation of the resultant data. This challenge of planning, performing, and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles but also include and understand the biochemistry of the plant's response to these stressors. In this review, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary, and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.


Assuntos
Ecossistema , Insetos/fisiologia , Microbiota , Plantas/metabolismo , Agricultura , Animais , Insetos/microbiologia , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Plantas/parasitologia , Compostos Orgânicos Voláteis/metabolismo
4.
Plant Signal Behav ; 13(1): e1422461, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29297748

RESUMO

South Florida is home to a number of native species of orchids. The Florida Panther National Wildlife Refuge has 27 known species, including Prosthechea cochleata, the clamshell orchid, which is listed as endangered on Florida's Regulated Plant Index. In a prior study done on this species in Mexico, P. cochleata was found to produce no floral fragrance at the particular study location. However, blooming orchids of this species at the University of Florida in Gainesville, were noted to be fragrant. In this paper, we document the presence of floral fragrance compounds from P. cochleata by using by gas chromatography mass spectrometry (GC/MS) analysis of headspace volatile collection. The orchids sampled were found to be consistently producing eight volatiles that are common in floral fragrances, including those of previous orchid species studied. By knowing the fragrance compounds produced, we can better understand the pollination biology of this endangered orchid. This information could be used to help future conservation efforts for P. cochelata by increasing pollination and subsequent seed capsule production.


Assuntos
Espécies em Perigo de Extinção , Flores/fisiologia , Odorantes/análise , Orchidaceae/fisiologia , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...