Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 138(23): 234903, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802981

RESUMO

An athermal solution of semiflexible macromolecules with excluded volume interactions has been studied at various concentrations (dilute, semidilute, and concentrated solutions) in a film of thickness D between two hard walls by grand canonical Monte Carlo simulations of the bond fluctuation lattice model. Analyzing profiles of orientational order parameters across the film, we find that for thick films two phase transitions occur at chemical potentials of the polymers (or polymer densities, respectively) where the bulk polymer solution still is in the disordered isotropic phase. At rather small polymer densities, polymers accumulate at the walls due to an entropic attraction and undergo a transition to two-dimensional nematic order. Due to the properties of the lattice model, this order has Ising character, and the simulation results seem to be compatible with a second-order transition. Increasing the polymer density, nematically ordered "wetting" layers form at both walls; the increase of thickness of these layers is compatible with a logarithmic divergence when the chemical potential of the isotropic-nematic transition in the bulk is approached. In a system of finite width, D, between the walls, this leads to capillary nematization, exhibiting a reduction of the transition chemical potential inversely proportional to D. This transition exists only if D exceeds some critical value Dc, while the transition from the isotropic phase to the two-dimensional nematic state is suggested to persist down to ultrathin films.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041810, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181168

RESUMO

Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness ("capillary nematization"). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent to the hard planar walls from the disordered phase, where the bond vectors of the macromolecules show local ordering (i.e., "preferential orientation" along the x or y axes of the simple cubic lattice, but no long-range orientational order occurs), to a quasi-two-dimensional nematic phase (with the director at each wall being oriented along either the x or y axis), while the bulk of the film is still disordered. When the chemical potential or monomer density increase, respectively, the thickness of these surface-induced nematic layers grows, causing the disappearance of the disordered region in the center of the film.

3.
Eur Phys J E Soft Matter ; 26(1-2): 63-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18427725

RESUMO

Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 2): 026702, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930169

RESUMO

The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20 ) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the "repulsive wall" method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g., gravitationlike) field and infers, via a local density approximation, the equation of state from the hydrostatic equilibrium condition. We confirm the conclusion that the latter technique is far more efficient than the repulsive wall method, but we find that the thermodynamic integration method is similarly efficient as the sedimentation equilibrium method. For very stiff chains the onset of nematic order enforces the formation of an isotropic-nematic interface in the sedimentation equilibrium method leading to strong rounding effects and deviations from the true equation of state in the transition regime.

5.
J Chem Phys ; 122(17): 174907, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15910069

RESUMO

Using a coarse-grained model we perform a Monte Carlo simulation of the state behavior of an individual semiflexible macromolecule. Chains consisting of N = 256 and 512 monomer units have been investigated. A recently proposed enhanced sampling Monte Carlo technique for the bond fluctuation model in an expanded ensemble in four-dimensional coordinate space was applied. The algorithm allows one to accelerate the sampling of statistically independent three-dimensional conformations in a dense globular state. We found that the temperature of the intraglobular liquid-solid transition decreases with increasing chain stiffness. We have investigated the possible intraglobular orientationally ordered (i.e., liquid-crystalline) structures and obtained a diagram of states for chains consisting of N = 256 monomer units. This diagram contains regions of stability of coil, two spherical globules (liquid and solid), and rod-like globule conformations. Transitions between the globular states are rounded first-order ones since the states of liquid, solid, and cylinder-like globules do have different internal symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...