Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026806

RESUMO

Enzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O 2 is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.143 Å) and efficiently catalyze pseudooxynicotine into 3-succinoyl-semialdehyde pyridine using O 2 . Through amino acid alterations with NicA2, five Pnao mutants were generated, which can degrade nicotine in Tris-HCl buffer and retained catabolic activity on its natural substrate. Nicotine-1'-N-oxide was identified as one of the reaction products. Four of the derivative mutants showed activity in rat serum and Trp220 and Asn224 were found critical for enzyme specificity. Our findings offer a novel avenue for research into aerobic nicotine catabolism and provides a promising method of generating additional nicotine-catalytic enzymes.

2.
J Biol Chem ; 300(5): 107282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604564

RESUMO

The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.


Assuntos
Proteínas de Bactérias , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/enzimologia , Animais , Camundongos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/enzimologia , Infecções Pneumocócicas/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Feminino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Tiocianatos
3.
J Biol Chem ; 300(3): 105689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280427

RESUMO

Urocanate reductase (UrdA) is a bacterial flavin-dependent enzyme that reduces urocanate to imidazole propionate, enabling bacteria to use urocanate as an alternative respiratory electron acceptor. Elevated serum levels of imidazole propionate are associated with the development of type 2 diabetes, and, since UrdA is only present in humans in gut bacteria, this enzyme has emerged as a significant factor linking the health of the gut microbiome and insulin resistance. Here, we investigated the chemistry of flavin oxidation by urocanate in the isolated FAD domain of UrdA (UrdA') using anaerobic stopped-flow experiments. This analysis unveiled the presence of a charge-transfer complex between reduced FAD and urocanate that forms within the dead time of the stopped-flow instrument (∼1 ms), with flavin oxidation subsequently occurring with a rate constant of ∼60 s-1. The pH dependence of the reaction and analysis of an Arg411Ala mutant of UrdA' are consistent with Arg411 playing a crucial role in catalysis by serving as the active site acid that protonates urocanate during hydride transfer from reduced FAD. Mutational analysis of urocanate-binding residues suggests that the twisted conformation of urocanate imposed by the active site of UrdA' facilitates urocanate reduction. Overall, this study provides valuable insight into the mechanism of urocanate reduction by UrdA.


Assuntos
Proteínas de Bactérias , Flavinas , Oxirredutases , Shewanella , Ácido Urocânico , Flavinas/metabolismo , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Ácido Urocânico/metabolismo , Shewanella/enzimologia , Shewanella/genética , Domínios Proteicos , Mutação , Domínio Catalítico , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770699

RESUMO

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Assuntos
Nicotina , Pseudomonas putida , Ratos , Animais , Oxigênio , Oxirredutases/metabolismo , Oxirredução
5.
Rapid Commun Mass Spectrom ; 37 Suppl 1: e9516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37013403

RESUMO

RATIONALE: Purification of recombinant proteins is a necessary step for functional or structural studies and other applications. Immobilized metal affinity chromatography is a common recombinant protein purification method. Mass spectrometry (MS) allows for confirmation of identity of expressed proteins and unambiguous detection of enzymatic substrates and reaction products. We demonstrate the detection of enzymes purified on immobilized metal affinity surfaces by direct or ambient ionization MS, and follow their enzymatic reactions by direct electrospray ionization (ESI) or desorption electrospray ionization (DESI). METHODS: A protein standard, His-Ubq, and two recombinant proteins, His-SHAN and His-CS, expressed in Escherichia coli were immobilized on two immobilized metal affinity systems, Cu-nitriloacetic acid (Cu-NTA) and Ni-NTA. The proteins were purified on surface, and released in the ESI spray solvent for direct infusion, when using the 96-well plate form factor, or analyzed directly from immobilized metal affinity-coated microscope slides by DESI-MS. Enzyme activity was followed by incubating the substrates in wells or by depositing substrate on immobilized protein on coated slides for analysis. RESULTS: Small proteins (His-Ubq) and medium proteins (His-SAHN) could readily be detected from 96-well plates by direct infusion ESI, or from microscope slides by DESI-MS after purification on surface from clarified E. coli cell lysate. Protein oxidation was observed for immobilized proteins on both Cu-NTA and Ni-NTA; however, this did not hamper the enzymatic reactions of these proteins. Both the nucleosidase reaction products for His-SAHN and the methylation product of His-CS (theobromine to caffeine) were detected. CONCLUSIONS: The immobilization, purification, release and detection of His-tagged recombinant proteins using immobilized metal affinity surfaces for direct infusion ESI-MS or ambient DESI-MS analyses were successfully demonstrated. Recombinant proteins were purified to allow identification directly out of clarified cell lysate. Biological activities of the recombinant proteins were preserved allowing the investigation of enzymatic activity via MS.


Assuntos
Cobre , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Níquel , Histidina/química , Escherichia coli/genética , Indicadores e Reagentes , Proteínas Recombinantes/genética
6.
Biochemistry ; 61(20): 2182-2187, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36154019

RESUMO

The enzyme nicotine oxidoreductase (NicA2) is a member of the flavoprotein amine oxidase family that uses a cytochrome c protein (CycN) as its oxidant instead of dioxygen, which is the oxidant used by most other members of this enzyme family. We recently identified a potential binding site for CycN on the surface of NicA2 through rigid body docking [J. Biol. Chem. 2022, 298 (8), 102251]. However, this potential binding interface has not been experimentally validated. In this paper, we used unnatural amino acid incorporation to probe the binding interface between NicA2 and CycN. Our results are consistent with a structural model of the NicA2-CycN complex predicted by protein-protein docking and AlphaFold, suggesting that this is the binding site for CycN on NicA2's surface. Based on additional mutagenesis of potentially redox active residues in NicA2, we propose that electron transfer from NicA2's flavin to CycN's heme occurs without the assistance of a protein-derived wire.


Assuntos
Nicotina , Oxirredutases , Aminas , Aminoácidos/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Transporte de Elétrons , Elétrons , Flavinas/metabolismo , Flavoproteínas/metabolismo , Heme/metabolismo , Nicotina/química , Oxidantes , Oxirredução , Oxirredutases/metabolismo , Oxigênio
7.
Proc Natl Acad Sci U S A ; 119(30): e2119368119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867824

RESUMO

Hypothiocyanite and hypothiocyanous acid (OSCN-/HOSCN) are pseudohypohalous acids released by the innate immune system which are capable of rapidly oxidizing sulfur-containing amino acids, causing significant protein aggregation and damage to invading bacteria. HOSCN is abundant in saliva and airway secretions and has long been considered a highly specific antimicrobial that is nearly harmless to mammalian cells. However, certain bacteria, commensal and pathogenic, are able to escape damage by HOSCN and other harmful antimicrobials during inflammation, which allows them to continue to grow and, in some cases, cause severe disease. The exact genes or mechanisms by which bacteria respond to HOSCN have not yet been elucidated. We have found, in Escherichia coli, that the flavoprotein RclA, previously implicated in reactive chlorine resistance, reduces HOSCN to thiocyanate with near-perfect catalytic efficiency and strongly protects E. coli against HOSCN toxicity. This is notable in E. coli because this species thrives in the chronically inflamed environment found in patients with inflammatory bowel disease and is able to compete with and outgrow other important commensal organisms, suggesting that HOSCN may be a relevant antimicrobial in the gut, which has not previously been explored. RclA is conserved in a variety of epithelium-colonizing bacteria, implicating its HOSCN reductase activity in a variety of host-microbe interactions. We show that an rclA mutant of the probiotic Limosilactobacillus reuteri is sensitive to HOSCN and that RclA homologs from Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides thetaiotaomicron all have potent protective activity against HOSCN when expressed in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Oxirredutases , Tiocianatos , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Tiocianatos/química , Tiocianatos/metabolismo
8.
J Biol Chem ; 298(8): 102251, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835223

RESUMO

The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin-containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.


Assuntos
Proteínas de Bactérias , Oxirredutases , Pseudomonas putida , Proteínas de Bactérias/metabolismo , Butanonas , Citocromos c/metabolismo , Flavinas/metabolismo , Cinética , Monoaminoxidase/metabolismo , Nicotina/análogos & derivados , Nicotina/química , Oxirredutases/metabolismo , Pseudomonas putida/enzimologia
9.
FEBS J ; 289(3): 787-807, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510734

RESUMO

Thiol-containing nucleophiles such as cysteine react spontaneously with the citric acid cycle intermediate fumarate to form S-(2-succino)-adducts. In Bacillus subtilis, a salvaging pathway encoded by the yxe operon has recently been identified for the detoxification and exploitation of these compounds as sulfur sources. This route involves acetylation of S-(2-succino)cysteine to N-acetyl-2-succinocysteine, which is presumably converted to oxaloacetate and N-acetylcysteine, before a final deacetylation step affords cysteine. The critical oxidative cleavage of the C-S bond of N-acetyl-S-(2-succino)cysteine was proposed to depend on the predicted flavoprotein monooxygenase YxeK. Here, we characterize YxeK and verify its role in S-(2-succino)-adduct detoxification and sulfur metabolism. Detailed biochemical and mechanistic investigation of YxeK including 18 O-isotope-labeling experiments, homology modeling, substrate specificity tests, site-directed mutagenesis, and (pre-)steady-state kinetics provides insight into the enzyme's mechanism of action, which may involve a noncanonical flavin-N5-peroxide species for C-S bond oxygenolysis.


Assuntos
Cisteína/análogos & derivados , Cisteína/genética , Flavoproteínas/genética , Oxigenases de Função Mista/genética , Acetilação , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cisteína/metabolismo , Flavinas/genética , Flavinas/metabolismo , Flavoproteínas/metabolismo , Fumaratos/metabolismo , Cinética , Modelos Químicos , Mutagênese Sítio-Dirigida , Óperon/genética , Especificidade por Substrato/genética , Compostos de Sulfidrila/metabolismo
10.
Nat Commun ; 12(1): 4542, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315871

RESUMO

Folate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.


Assuntos
Formaldeído/metabolismo , Nucleotídeos/metabolismo , Thermotoga maritima/enzimologia , Timidilato Sintase/metabolismo , Biocatálise , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Domínio Catalítico , Ativação Enzimática , Flavinas/metabolismo , Metilação , Eletricidade Estática , Timidilato Sintase/química
12.
Nat Chem Biol ; 17(3): 344-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432238

RESUMO

Nicotine oxidoreductase (NicA2), a member of the flavin-containing amine oxidase family, is of medical relevance as it shows potential as a therapeutic to aid cessation of smoking due to its ability to oxidize nicotine into a non-psychoactive metabolite. However, the use of NicA2 in this capacity is stymied by its dismal O2-dependent activity. Unlike other enzymes in the amine oxidase family, NicA2 reacts very slowly with O2, severely limiting its nicotine-degrading activity. Instead of using O2 as an oxidant, we discovered that NicA2 donates electrons to a cytochrome c, which means that NicA2 is actually a dehydrogenase. This is surprising, as enzymes of the flavin-containing amine oxidase family were invariably thought to use O2 as an electron acceptor. Our findings establish new perspectives for engineering this potentially useful therapeutic and prompt a reconsideration of the term 'oxidase' in referring to members of the flavin-containing amine 'oxidase' family.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Flavina-Adenina Dinucleotídeo/química , Nicotina/química , Oxirredutases/química , Pseudomonas putida/química , Alcaloides/química , Alcaloides/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Bovinos , Clonagem Molecular , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Nicotina/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudomonas putida/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
13.
Nat Chem Biol ; 16(5): 556-563, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066967

RESUMO

One of the hallmark reactions catalyzed by flavin-dependent enzymes is the incorporation of an oxygen atom derived from dioxygen into organic substrates. For many decades, these flavin monooxygenases were assumed to use exclusively the flavin-C4a-(hydro)peroxide as their oxygen-transferring intermediate. We demonstrate that flavoenzymes may instead employ a flavin-N5-peroxide as a soft α-nucleophile for catalysis, which enables chemistry not accessible to canonical monooxygenases. This includes, for example, the redox-neutral cleavage of carbon-hetero bonds or the dehalogenation of inert environmental pollutants via atypical oxygenations. We furthermore identify a shared structural motif for dioxygen activation and N5-functionalization, suggesting a conserved pathway that may be operative in numerous characterized and uncharacterized flavoenzymes from diverse organisms. Our findings show that overlooked flavin-N5-oxygen adducts are more widespread and may facilitate versatile chemistry, thus upending the notion that flavin monooxygenases exclusively function as nature's equivalents to organic peroxides in synthetic chemistry.


Assuntos
Proteínas de Escherichia coli/química , Oxigenases/química , Biocatálise , Cristalografia por Raios X , Dinitrocresóis/química , Proteínas de Escherichia coli/metabolismo , Nitrogênio/química , Oxigênio/química , Oxigenases/metabolismo , Peróxidos/química , Filogenia
14.
Proc Natl Acad Sci U S A ; 116(46): 23040-23049, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659041

RESUMO

The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aß40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aß40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aß40 and α-synuclein into single amyloid-prone conformations.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Cinética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregados Proteicos , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
15.
Nat Commun ; 10(1): 4833, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645566

RESUMO

It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding.


Assuntos
Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Domínios de Homologia de src , Animais , Galinhas , Cinética , Ligação Proteica , Redobramento de Proteína
16.
Nat Chem Biol ; 14(11): 1051-1058, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323217

RESUMO

To successfully colonize the intestine, bacteria must survive passage through the stomach. The permeability of the outer membrane renders the periplasm of Gram-negative bacteria vulnerable to stomach acid, which inactivates proteins. Here we report that the semipermeable nature of the outer membrane allows the development of a strong Donnan equilibrium across this barrier at low pH. As a result, when bacteria are exposed to conditions that mimic gastric juice, periplasmic chloride concentrations rise to levels that exceed 0.6 M. At these chloride concentrations, proteins readily aggregate in vitro. The acid sensitivity of strains lacking acid-protective chaperones is enhanced by chloride, suggesting that these chaperones protect periplasmic proteins both from acidification and from the accompanying accumulation of chloride. These results illustrate how organisms have evolved chaperones to respond to the substantial chemical threat imposed by otherwise innocuous chloride concentrations that are amplified to proteotoxic levels by low-pH-induced Donnan equilibrium effects.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Cloretos/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteômica/métodos , Ânions , Proteínas de Transporte/metabolismo , Suco Gástrico/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lipoproteínas/metabolismo , Chaperonas Moleculares , Periplasma , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteoma , Sulfatos/química
17.
EcoSal Plus ; 8(1)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29988001

RESUMO

The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Chaperonas Moleculares/química , Peptidilprolil Isomerase/química , Salmonella/química , Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Periplasma/química , Dobramento de Proteína
18.
Proc Natl Acad Sci U S A ; 115(19): 4909-4914, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686059

RESUMO

The reactions of enzymes and cofactors with gaseous molecules such as dioxygen (O2) are challenging to study and remain among the most contentious subjects in biochemistry. To date, it is largely enigmatic how enzymes control and fine-tune their reactions with O2, as exemplified by the ubiquitous flavin-dependent enzymes that commonly facilitate redox chemistry such as the oxygenation of organic substrates. Here we employ O2-pressurized X-ray crystallography and quantum mechanical calculations to reveal how the precise positioning of O2 within a flavoenzyme's active site enables the regiospecific formation of a covalent flavin-oxygen adduct and oxygenating species (i.e., the flavin-N5-oxide) by mimicking a critical transition state. This study unambiguously demonstrates how enzymes may control the O2 functionalization of an organic cofactor as prerequisite for oxidative catalysis. Our work thus illustrates how O2 reactivity can be harnessed in an enzymatic environment and provides crucial knowledge for future rational design of O2-reactive enzymes.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Dinitrocresóis/química , Oxigenases de Função Mista/química , Simulação de Acoplamento Molecular , Oxigênio/química , Catálise , Cristalografia por Raios X , Oxirredução , Teoria Quântica
19.
Nat Chem Biol ; 14(4): 329-330, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507387
20.
Curr Opin Struct Biol ; 48: 1-5, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28734135

RESUMO

Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Proteínas Periplásmicas/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...