Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(7): 155, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329482

RESUMO

KEY MESSAGE: A novel locus was discovered on chromosome 7 associated with a lesion mimic in maize; this lesion mimic had a quantitative and heritable phenotype and was predicted better via subset genomic markers than whole genome markers across diverse environments. Lesion mimics are a phenotype of leaf micro-spotting in maize (Zea mays L.), which can be early signs of biotic or abiotic stresses. Dissecting its inheritance is helpful to understand how these loci behave across different genetic backgrounds. Here, 538 maize recombinant inbred lines (RILs) segregating for a novel lesion mimic were quantitatively phenotyped in Georgia, Texas, and Wisconsin. These RILs were derived from three bi-parental crosses using a tropical pollinator (Tx773) as the common parent crossed with three inbreds (LH195, LH82, and PB80). While this lesion mimic was heritable across three environments based on phenotypic ([Formula: see text] = 0.68) and genomic ([Formula: see text] = 0.91) data, transgressive segregation was observed. A genome-wide association study identified a single novel locus on chromosome 7 (at 70.6 Mb) also covered by a quantitative trait locus interval (69.3-71.0 Mb), explaining 11-15% of the variation, depending on the environment. One candidate gene identified in this region, Zm00001eb308070, is related to the abscisic acid pathway involving in cell death. Genomic predictions were applied to genome-wide markers (39,611 markers) contrasted with a marker subset (51 markers). Population structure explained more variation than environment in genomic prediction, but other substantial genetic background effects were additionally detected. Subset markers explained substantially less genetic variation (24.9%) for the lesion mimic than whole genome markers (55.4%) in the model, yet predicted the lesion mimic better (0.56-0.66 vs. 0.26-0.29). These results indicate this lesion mimic phenotype was less affected by environment than by epistasis and genetic background effects, which explain its transgressive segregation.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Epistasia Genética , Mapeamento Cromossômico , Fenótipo , Patrimônio Genético , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293517

RESUMO

Wheat flour's end-use quality is tightly linked to the quantity and composition of storage proteins in the endosperm. TAM 111 and TAM 112 are two popular cultivars grown in the Southern US Great Plains with significantly different protein content. To investigate regulatory differences, transcriptome data were analyzed from developing grains at early- and mid-filling stages. At the mid-filling stage, TAM 111 preferentially upregulated starch metabolism-related pathways compared to TAM 112, whereas amino acid metabolism and transporter-related pathways were over-represented in TAM 112. Elemental analyses also indicated a higher N percentage in TAM 112 at the mid-filling stage. To explore the regulatory variation, weighted correlation gene network was constructed from publicly available RNAseq datasets to identify the modules differentially regulated in TAM 111 and TAM 112. Further, the potential transcription factors (TFs) regulating those modules were identified using graphical least absolute shrinkage and selection operator (GLASSO). Homologs of the OsNF-Y family members with known starch metabolism-related functions showed higher connectivities in TAM 111. Multiple TFs with high connectivity in TAM 112 had predicted functions associated with ABA response in grain. These results will provide novel targets for breeders to explore and further our understanding in mechanisms regulating grain development.


Assuntos
Proteínas de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Farinha , Perfilação da Expressão Gênica , Grão Comestível/metabolismo , Transcriptoma , Fatores de Transcrição/metabolismo , Amido/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Am J Trop Med Hyg ; 105(5): 1227-1229, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544043

RESUMO

To better understand the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant lineage distribution in a college campus population, we carried out viral genome surveillance over a 7-week period from January to March 2021. Among the sequences were three novel viral variants: BV-1 with a B.1.1.7/20I genetic background and an additional spike mutation Q493R, associated with a mild but longer-than-usual COVID-19 case in a college-age person, BV-2 with a T478K mutation on a 20B genetic background, and BV-3, an apparent recombinant lineage. This work highlights the potential of an undervaccinated younger population as a reservoir for the spread and generation of novel variants. This also demonstrates the value of whole genome sequencing as a routine disease surveillance tool.


Assuntos
COVID-19/virologia , Reservatórios de Doenças/virologia , Mutação , SARS-CoV-2/genética , Estudantes/estatística & dados numéricos , Universidades , Adulto , COVID-19/etiologia , Genoma Viral , Humanos , Testes de Neutralização , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...