Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Assoc Res Otolaryngol ; 24(4): 401-412, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516679

RESUMO

Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.


Assuntos
Vestibulopatia Bilateral , Implante Coclear , Implantes Cocleares , Vestíbulo do Labirinto , Animais , Humanos , Implante Coclear/métodos , Vestíbulo do Labirinto/cirurgia , Vestíbulo do Labirinto/fisiologia , Cóclea
2.
Audiol Neurootol ; 27(6): 458-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817001

RESUMO

INTRODUCTION: Different eye movement analysis algorithms are used in vestibular implant research to quantify the electrically evoked vestibulo-ocular reflex (eVOR). Often, standard techniques are used as applied for quantification of the natural VOR in healthy subjects and patients with vestibular loss. However, in previous research, it was observed that the morphology of the VOR and eVOR may differ substantially. In this study, it was investigated if the analysis techniques for eVOR need to be adapted to optimize a truthful quantification of the eVOR (VOR gain, orientation of the VOR axis, asymmetry, and phase shift). METHODS: "Natural" VOR responses were obtained in six age-matched healthy subjects, and eVOR responses were obtained in eight bilateral-vestibulopathy patients fitted with a vestibular implant. Three conditions were tested: "nVOR" 1-Hz sinusoidal whole-body rotations of healthy subjects in a rotatory chair, "eVOR" 1-Hz sinusoidal electrical vestibular implant stimulation without whole-body rotations in bilateral-vestibulopathy patients, and "dVOR" 1-Hz sinusoidal whole-body rotations in bilateral-vestibulopathy patients using the chair-mounted gyroscope output to drive the electrical vestibular implant stimulation (therefore also in sync 1 Hz sinusoidal). VOR outcomes were determined from the obtained VOR responses, using three different eye movement analysis paradigms: (1) peak eye velocity detection using the raw eye traces; (2) peak eye velocity detection using full-cycle sine fitting of eye traces; (3) peak eye velocity detection using half-cycle sine fitting of eye traces. RESULTS: The type of eye movement analysis algorithm significantly influenced VOR outcomes, especially regarding the VOR gain and asymmetry of the eVOR in bilateral-vestibulopathy patients fitted with a vestibular implant. Full-cycle fitting lowered VOR gain in the eVOR condition (mean difference: 0.14 ± 0.06 95% CI, p = 0.018). Half-cycle fitting lowered VOR gain in the dVOR condition (mean difference: 0.08 ± 0.04 95% CI, p = 0.009). In the eVOR condition, half-cycle fitting was able to demonstrate the asymmetry between the excitatory and inhibitory phases of stimulation in comparison with the full-cycle fitting (mean difference: 0.19 ± 0.12 95% CI, p = 0.024). The VOR axis and phase shift did not differ significantly between eye movement analysis algorithms. In healthy subjects, no clinically significant effect of eye movement analysis algorithms on VOR outcomes was observed. CONCLUSION: For the analysis of the eVOR, the excitatory and inhibitory phases of stimulation should be analysed separately due to the inherent asymmetry of the eVOR. A half-cycle fitting method can be used as a more accurate alternative for the analysis of the full-cycle traces.


Assuntos
Vestibulopatia Bilateral , Vestíbulo do Labirinto , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Movimentos Oculares , Próteses e Implantes
3.
Otolaryngol Clin North Am ; 53(1): 115-126, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31677739

RESUMO

Recent research has shown promising results for the development of a clinically feasible vestibular implant in the near future. However, correct electrode placement remains a challenge. It was shown that fluoroscopy was able to visualize the semicircular canal ampullae and electrodes, and guide electrode insertion in real time. Ninety-four percent of the 18 electrodes were implanted correctly (<1.5 mm distance to target). The median distances were 0.60 mm, 0.85 mm, and 0.65 mm for the superior, lateral, and posterior semicircular canal, respectively. These findings suggest that fluoroscopy can significantly improve electrode placement during vestibular implantation.


Assuntos
Implante Coclear/métodos , Neuroestimuladores Implantáveis , Canais Semicirculares/cirurgia , Implante Coclear/instrumentação , Estudos de Viabilidade , Fluoroscopia , Humanos , Estudo de Prova de Conceito , Canais Semicirculares/fisiologia , Nervo Vestibular/patologia , Nervo Vestibular/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...