Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 61, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418840

RESUMO

We present a novel approach for Stimulated Raman Scattering (SRS) spectroscopy in which a hyper spectral resolution and high-speed spectral acquisition are achieved by employing amplified offset-phase controlled fs-pulse bursts. We investigate the method by solving the coupled non-linear Schrödinger equations and validate it by numerically characterizing SRS in molecular nitrogen as a model compound. The spectral resolution of the method is found to be determined by the inverse product of the number of pulses in the burst and the intraburst pulse separation. The SRS spectrum is obtained through a motion-free scanning of the offset phase that results in a sweep of the Raman-shift frequency. Due to high spectral resolution and fast motion-free scanning the technique is beneficial for a number SRS-based applications such as gas sensing and chemical analysis.

2.
Opt Express ; 31(22): 37040-37049, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017841

RESUMO

Multi-photon resonant spectroscopies require tunable narrowband excitation to deliver spectral selectivity and, simultaneously, high temporal intensity to drive a nonlinear-optical process. These contradictory requirements are achievable with bursts of ultrashort pulses, which provides both high intensity and tunable narrowband peaks in the frequency domain arising from spectral interference. However, femtosecond pulse bursts need special attention during their amplification [Optica7, 1758 (2020)10.1364/OPTICA.403184], which requires spectral peak suppression to increase the energy safely extractable from a chirped-pulse amplifier (CPA). Here, we present a method combining safe laser CPA, relying on spectral scrambling, with a parametric frequency converter that automatically restores the desired spectral peak structure and delivers narrow linewidths for bursts of ultrashort pulses at microjoule energies. The shown results pave the way to new high-energy ultrafast laser sources with controllable spectral selectivity.

3.
Opt Express ; 30(18): 32411-32427, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242303

RESUMO

In this paper, we present a novel stochastic and spatially lumped multi-mode model to describe the nonlinear dynamics of actively Q-switched lasers and random perturbations due to amplified spontaneous emission. This model will serve as a basis for the design of (nonlinear) control and estimation strategies and thus a high value is set on its computational efficiency. Therefore, a common traveling-wave model is chosen as a starting point and a number of model-order reduction steps are performed. As a result, a set of nonlinear ordinary differential equations for the dynamic behavior of the laser during a switching cycle is obtained. A semi-analytic solution of these differential equations yields expressions for the population inversion after a switching cycle and for the output energy, which are then used to formulate a nonlinear discrete-time model for the pulse-to-pulse dynamics. Simulation studies including models with different levels of complexity and first experimental results demonstrate the feasibility of the proposed approach.

4.
Opt Express ; 28(2): 1722-1737, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121879

RESUMO

The performance of regenerative amplifiers at high repetition rates is often limited by the occurrence of bifurcations induced by a destabilization of the pulse-to-pulse dynamics. While bifurcations can be suppressed by increasing the seed energy using dedicated pre-amplifiers, the availability of adjustable filters and control electronics in modern pulse amplifiers allows to exploit feedback strategies to cope with these instabilities. In this paper, we present a theoretical and experimental analysis of active feedback methods to stabilize otherwise unstable operational regimes of regenerative amplifiers. To this end, the dynamics of regenerative amplifiers are investigated starting from a general space-dependent description to obtain a generalization of existing models from the literature. Suitable feedback strategies are then developed utilizing measurements of the output pulse energies or the transmitted pump light, respectively. The effectiveness of the proposed approach is highlighted by experimental results for a Yb:CaF2-based regenerative amplifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...