Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891766

RESUMO

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Assuntos
Sistemas CRISPR-Cas , Quimotripsina , Edição de Genes , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Tripsina , Glycine max/genética , Glycine max/metabolismo , Quimotripsina/metabolismo , Quimotripsina/genética , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genética , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Edição de Genes/métodos , Mutação , Inibidores da Tripsina/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Phytopathology ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772042

RESUMO

The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR towards P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan and 3 mutants derived from fast neutron (FN) irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level, but also defense pathways unique to each cultivar such as stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible FN mutants lacked enrichment of three terpenoid related-pathways and two cell wall-related pathways at either one or both timepoints, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important KEGG pathways at either one or both timepoints, including sesquiterpenoid and triterpenoid biosynthesis, thiamine metabolism, arachidonic acid, stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Additionally, thirty-one genes which were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins, valine, leucine, and isoleucine biosynthesis and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and furthers our understanding of the complex network associated with QDR mechanisms in soybean towards P. sojae.

3.
BMC Plant Biol ; 24(1): 194, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493116

RESUMO

BACKGROUND: In soybeans, faster canopy coverage (CC) is a highly desirable trait but a fully covered canopy is unfavorable to light interception at lower levels in the canopy with most of the incident radiation intercepted at the top of the canopy. Shoot architecture that influences CC is well studied in crops such as maize and wheat, and altering architectural traits has resulted in enhanced yield. However, in soybeans the study of shoot architecture has not been as extensive. RESULTS: This study revealed significant differences in CC among the selected soybean accessions. The rate of CC was found to decrease at the beginning of the reproductive stage (R1) followed by an increase during the R2-R3 stages. Most of the accessions in the study achieved maximum rate of CC between R2-R3 stages. We measured Light interception (LI), defined here as the ratio of Photosynthetically Active Radiation (PAR) transmitted through the canopy to the incoming PAR or the radiation above the canopy. LI was found to be significantly correlated with CC parameters, highlighting the relationship between canopy structure and light interception. The study also explored the impact of plant shape on LI and CO2 assimilation. Plant shape was characterized into distinct quantifiable parameters and by modeling the impact of plant shape on LI and CO2 assimilation, we found that plants with broad and flat shapes at the top maybe more photosynthetically efficient at low light levels, while conical shapes were likely more advantageous when light was abundant. Shoot architecture of plants in this study was described in terms of whole plant, branching and leaf-related traits. There was significant variation for the shoot architecture traits between different accessions, displaying high reliability. We found that that several shoot architecture traits such as plant height, and leaf and internode-related traits strongly influenced CC and LI. CONCLUSION: In conclusion, this study provides insight into the relationship between soybean shoot architecture, canopy coverage, and light interception. It demonstrates that novel shoot architecture traits we have defined here are genetically variable, impact CC and LI and contribute to our understanding of soybean morphology. Correlations between different architecture traits, CC and LI suggest that it is possible to optimize soybean growth without compromising on light transmission within the soybean canopy. In addition, the study underscores the utility of integrating low-cost 2D phenotyping as a practical and cost-effective alternative to more time-intensive 3D or high-tech low-throughput methods. This approach offers a feasible means of studying basic shoot architecture traits at the field level, facilitating a broader and efficient assessment of plant morphology.


Assuntos
Glycine max , Fotossíntese , Dióxido de Carbono , Reprodutibilidade dos Testes , Produtos Agrícolas , Folhas de Planta , Luz
4.
Theor Appl Genet ; 136(5): 109, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039870

RESUMO

KEY MESSAGE: Sucrose in soybean seeds is desirable for many end-uses. Increased sucrose contents were discovered to associate with a chromosome 16 deletion resulting from fast neutron irradiation. Soybean is one of the most economically important crops in the United States. A primary end-use of soybean is for livestock feed. Therefore, genetic improvement of seed composition is one of the most important goals in soybean breeding programs. Sucrose is desired in animal feed due to its role as an easily digestible energy source. An elite soybean line was irradiated with fast neutrons and the seed from plants were screened for altered seed composition with near-infrared spectroscopy (NIR). One mutant line, G15FN-54, was found to have higher sucrose content (8-9%) than the parental line (5-6%). Comparative genomic hybridization (CGH) revealed three large deletions on chromosomes (Chrs) 10, 13, and 16 in the mutant, which were confirmed through whole genome sequencing (WGS). A bi-parental population derived from the mutant G15FN-54 and the cultivar Benning was developed to conduct a bulked segregant analysis (BSA) with SoySNP50K BeadChips, revealing that the deletion on Chr 16 might be responsible for the altered phenotype. The mapping result using the bi-parental population confirmed that the deletion on Chr 16 conferred elevated sucrose content and a total of 21 genes are located within this Chr 16 deletion. NIR and high-pressure liquid chromatography (HPLC) were used to confirm the stability of the phenotype across generations in the bi-parental population. The mutation will be useful to understand the genetic control of soybean seed sucrose content.


Assuntos
Glycine max , Sacarose , Humanos , Glycine max/genética , Hibridização Genômica Comparativa , Cromossomos Humanos Par 16/química , Proteínas de Plantas/genética , Melhoramento Vegetal , Fenótipo , Deleção Cromossômica
5.
Plant Genome ; 16(2): e20310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988044

RESUMO

The USDA Soybean Isoline Collection has been an invaluable resource for the soybean genetics and breeding community. This collection, established in 1972, consists of 611 near-isogenic lines (NILs) carrying one or multiple genes conferring traits that had been determined to exhibit Mendelian inheritance. It has been used in multiple studies on the genetic basis, physiology, and agronomy of these qualitative traits. Here, we used publicly available genotype (SoySNP50K), phenotype, and pedigree data on this collection to characterize the isogenicity of the NILs and identify chromosomal positions of unmapped genes. A total of 368 NILs had at least 80% identity to their recurrent parent and, thus, were useful for what can be called introgression mapping. Both on-target and off-target introgressions were evaluated. The size of on-target introgressions into individual NILs ranged from 61 kb to 8.4 Mb, whereas off-target introgressions ranged from 2.6 kb to 54.8 Mb. The observed large off-target introgressions indicated that some NILs carry introgressions nearly the size of an entire chromosome. By applying introgression mapping to genes that had never been mapped, we identified the likely chromosomal positions of six such genes: ab, im, lo, Np, pc, and Rpm. The size of mapping intervals was large in some cases (10.28 Mb for im) but small in others (0.21 Mb for Np). The results reported herein will provide future researchers with a resource to help select informative NILs for future studies, and provide a starting point to further fine map, and ultimately clone and functionally characterize these six soybean genes.


Assuntos
Glycine max , Locos de Características Quantitativas , Marcadores Genéticos , Melhoramento Vegetal , Glycine max/genética , Estados Unidos , United States Department of Agriculture
6.
Plant Genome ; 16(1): e20308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744727

RESUMO

Soybean is grown primarily for the protein and oil extracted from its seed and its value is influenced by these components. The objective of this study was to map marker-trait associations (MTAs) for the concentration of seed protein, oil, and meal protein using the soybean nested association mapping (SoyNAM) population. The composition traits were evaluated on seed harvested from over 5000 inbred lines of the SoyNAM population grown in 10 field locations across 3 years. Estimated heritabilities were at least 0.85 for all three traits. The genotyping of lines with single nucleotide polymorphism markers resulted in the identification of 107 MTAs for the three traits. When MTAs for the three traits that mapped within 5 cM intervals were binned together, the MTAs were mapped to 64 intervals on 19 of the 20 soybean chromosomes. The majority of the MTA effects were small and of the 107 MTAs, 37 were for protein content, 39 for meal protein, and 31 for oil content. For cases where a protein and oil MTAs mapped to the same interval, most (94%) significant effects were opposite for the two traits, consistent with the negative correlation between these traits. A coexpression analysis identified candidate genes linked to MTAs and 18 candidate genes were identified. The large number of small effect MTAs for the composition traits suggest that genomic prediction would be more effective in improving these traits than marker-assisted selection.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Mapeamento Cromossômico/métodos , Genoma de Planta , Sementes/genética
7.
Plant Genome ; 16(2): e20304, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792954

RESUMO

Early canopy coverage is a desirable trait that is a major determinant of yield in soybean (Glycine max). Variation in traits comprising shoot architecture can influence canopy coverage, canopy light interception, canopy-level photosynthesis, and source-sink partitioning efficiency. However, little is known about the extent of phenotypic diversity of shoot architecture traits and their genetic control in soybean. Thus, we sought to understand the contribution of shoot architecture traits to canopy coverage and to determine the genetic control of these traits. We examined the natural variation for shoot architecture traits in a set of 399 diverse maturity group I soybean (SoyMGI) accessions to identify relationships between traits, and to identify loci that are associated with canopy coverage and shoot architecture traits. Canopy coverage was correlated with branch angle, number of branches, plant height, and leaf shape. Using previously collected 50K single nucleotide polymorphism data, we identified quantitative trait locus (QTL) associated with branch angle, number of branches, branch density, leaflet shape, days to flowering, maturity, plant height, number of nodes, and stem termination. In many cases, QTL intervals overlapped with previously described genes or QTL. We also found QTL associated with branch angle and leaflet shape located on chromosomes 19 and 4, respectively, and these QTL overlapped with QTL associated with canopy coverage, suggesting the importance of branch angle and leaflet shape in determining canopy coverage. Our results highlight the role individual architecture traits play in canopy coverage and contribute information on their genetic control that could help facilitate future efforts in their genetic manipulation.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Fenótipo , Folhas de Planta , Fotossíntese
8.
Methods Mol Biol ; 2464: 173-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258833

RESUMO

Protoplast is a versatile system for conducting cell-based assays, analyzing diverse signaling pathways, studying functions of cellular machineries, and functional genomics screening. Protoplast engineering has become an important tool for basic plant molecular biology research and developing genome-edited crops. This system allows the direct delivery of DNA, RNA, or proteins into plant cells and provides a high-throughput system to validate gene-editing reagents. It also facilitates the delivery of homology-directed repair templates (donor molecules) into plant cells, enabling precise DNA edits in the genome. There is a great deal of interest in the plant community to develop these precise edits, as they may expand the potential for developing value-added traits which may be difficult to achieve by other gene-editing applications and/or traditional breeding alone. This chapter provides improved working protocols for isolating and transforming protoplast from immature soybean seeds with 44% of transfection efficiency validated by the green fluorescent protein reporter. We also describe a method for gene editing in soybean protoplasts using single guide RNA molecules.


Assuntos
Edição de Genes , Protoplastos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Melhoramento Vegetal , Protoplastos/metabolismo , Ribonucleoproteínas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transfecção
9.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100358

RESUMO

The mutagenic effects of ionizing radiation have been used for decades to create novel variants in experimental populations. Fast neutron (FN) bombardment as a mutagen has been especially widespread in plants, with extensive reports describing the induction of large structural variants, i.e., deletions, insertions, inversions, and translocations. However, the full spectrum of FN-induced mutations is poorly understood. We contrast small insertions and deletions (indels) observed in 27 soybean lines subject to FN irradiation with the standing indels identified in 107 diverse soybean lines. We use the same populations to contrast the nature and context (bases flanking a nucleotide change) of single-nucleotide variants. The accumulation of new single-nucleotide changes in FN lines is marginally higher than expected based on spontaneous mutation. In FN-treated lines and in standing variation, C→T transitions and the corresponding reverse complement G→A transitions are the most abundant and occur most frequently in a CpG local context. These data indicate that most SNPs identified in FN lines are likely derived from spontaneous de novo processes in generations following mutagenesis rather than from the FN irradiation mutagen. However, small indels in FN lines differ from standing variants. Short insertions, from 1 to 6 bp, are less abundant than in standing variation. Short deletions are more abundant and prone to induce frameshift mutations that should disrupt the structure and function of encoded proteins. These findings indicate that FN irradiation generates numerous small indels, increasing the abundance of loss-of-function mutations that impact single genes.


Assuntos
Nêutrons Rápidos , Glycine max , Mutação da Fase de Leitura , Mutação INDEL , Mutagênese , Glycine max/genética
10.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681702

RESUMO

The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.


Assuntos
Glycine max/genética , Ferro/metabolismo , Locos de Características Quantitativas , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Análise de Sequência de RNA , Glycine max/fisiologia
11.
Plant Genome ; 14(2): e20083, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724721

RESUMO

Reniform nematode (RN, Rotylenchulus reniformis Linford & Oliveira) has emerged as one of the most important plant parasitic nematodes of soybean [Glycine max (L.) Merr.]. Planting resistant varieties is the most effective strategy for nematode management. The objective of this study was to identify quantitative trait loci (QTL) for RN resistance in an exotic soybean line, PI 438489B, using two linkage maps constructed from the Universal Soybean Linkage Panel (USLP 1.0) and next-generation whole-genome resequencing (WGRS) technology. Two QTL controlling RN resistance were identified-the soybean cyst nematode (SCN, Heterodera glycines) resistance gene GmSNAP18 at the rhg1 locus and its paralog GmSNAP11. Strong association between resistant phenotype and haplotypes of the GmSNAP11 and GmSNAP18 was observed. The results indicated that GmSNAP11 possibly could have epistatic effect on GmSNAP18, or vice versa, with the presence of a significant correlation in RN resistance of rhg1-a GmSNAP18 vs. rhg1-b GmSNAP18. Most importantly, our preliminary data suggested that GmSNAP18 and GmSNAP11 proteins physically interact in planta, suggesting that they belong to the same pathway for resistance. Unlike GmSNAP18, no indication of GmSNAP11 copy number variation was found. Moreover, gene-based single nucleotide polymorphism (SNP) markers were developed for rapid detection of RN or SCN resistance at these loci. Our analysis substantiates synergic interaction between GmSNAP11 and GmSNAP18 genes and confirms their roles in RN as well as SCN resistance. These results could contribute to a better understanding of evolution and subfunctionalization of genes conferring resistance to multiple nematode species and provide a framework for further investigations.


Assuntos
Cistos , Tylenchoidea , Animais , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Doenças das Plantas/genética , Glycine max/genética
12.
Plant Direct ; 5(1): e00300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33506165

RESUMO

Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, the mPing element from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences in mPing resulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version of mPing called mmPing20. Transgenic soybean events carrying mPing-based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of the mmPing20F activation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the original mPing element, improving the overall effectiveness of the mutagenesis system.

13.
Plant Genome ; 13(1): e20000, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016628

RESUMO

Soybean breeding relies on the use of wild (Glycine soja Sieb. and Zucc.) and domesticated [Glycine max (L.) Merr.] germplasm for trait improvement. Soybeans are self-pollinating and accessions can be maintained as pure lines, however within-accession genetic variation has been observed in previous studies of some landraces and elite cultivars. The objective of this study was to characterize within-line variation in the accessions housed in the USDA Soybean Germplasm Collection. This collection includes over 20,000 accessions, each previously genotyped using the SoySNP50K Chip. Each SoySNP50K genotype was developed by pooling approximately three individuals per accession. Therefore, clusters of SNPs called as heterozygous within an accession can be inferred to represent putative regions of heterogeneity between the three individuals sampled. In this study, we found high-probability intervals of heterogeneity in 4% of the collection, representing 870 accessions. Heterogeneous loci were found on every chromosome and, collectively, covered 98.4% of the soybean genome and 99% of the gene models. Sanger sequencing confirmed regions of genomic heterogeneity among a subset of ten accessions. This dataset provides useful information and considerations for users of crop germplasm seed banks. Furthermore, the heterogeneous accessions and/or loci represent a unique genetic resource that is immediately available for forward and reverse genetics studies.


Assuntos
Fabaceae , Glycine max , Genoma de Planta , Genótipo , Humanos , Glycine max/genética , Estados Unidos , United States Department of Agriculture
14.
Front Plant Sci ; 11: 1005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774339

RESUMO

The ß-ketoacyl-[acyl carrier protein] synthase 1 (KASI) gene has been shown in model plant systems to be critical for the conversion of sucrose to oil. A previous study characterized the morphological and seed composition phenotypes associated with a reciprocal chromosomal translocation that disrupted one of the KASI genes in soybean. The principle findings of this work included a wrinkled seed phenotype, an increase in seed sucrose, a decrease in seed oil, and a low frequency of transmission of the translocation. However, it remained unclear which, if any, of these phenotypes were directly caused by the loss of KASI gene function, as opposed to the chromosomal translocation or other associated factors. In this study, CRISPR/Cas9 mutagenesis was used to generate multiple knockout alleles for this gene, and also one in-frame allele. These soybean plants were evaluated for morphology, seed composition traits, and genetic transmission. Our results indicate that the CRISPR/Cas9 mutants exhibited the same phenotypes as the chromosomal translocation mutant, validating that the observed phenotypes are caused by the loss of gene function. Furthermore, the plants harboring homozygous in-frame mutations exhibited similar phenotypes compared to the plants harboring homozygous knockout mutations. This result indicates that the amino acids lost in the in-frame mutant are essential for proper gene function. In-frame edits for this gene may need to target less essential and/or evolutionarily conserved domains in order to generate novel seed composition phenotypes.

15.
Plant Direct ; 4(5): e00220, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426691

RESUMO

Genome-wide association studies (GWAS) have proven to be a valuable approach for identifying genetic intervals associated with phenotypic variation in Medicago truncatula. These intervals can vary in size, depending on the historical local recombination. Typically, significant intervals span numerous gene models, limiting the ability to resolve high-confidence candidate genes underlying the trait of interest. Additional genomic data, including gene co-expression networks, can be combined with the genetic mapping information to successfully identify candidate genes. Co-expression network analysis provides information about the functional relationships of each gene through its similarity of expression patterns to other well-defined clusters of genes. In this study, we integrated data from GWAS and co-expression networks to pinpoint candidate genes that may be associated with nodule-related phenotypes in M. truncatula. We further investigated a subset of these genes and confirmed that several had existing evidence linking them nodulation, including MEDTR2G101090 (PEN3-like), a previously validated gene associated with nodule number.

16.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
17.
BMC Biotechnol ; 20(1): 10, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093670

RESUMO

BACKGROUND: As with many plant species, current genome editing strategies in soybean are initiated by stably transforming a gene that encodes an engineered nuclease into the genome. Expression of the transgene results in a double-stranded break and repair at the targeted locus, oftentimes resulting in mutation(s) at the intended site. As soybean is a self-pollinating species with 20 chromosome pairs, the transgene(s) in the T0 plant are generally expected to be unlinked to the targeted mutation(s), and the transgene(s)/mutation(s) should independently assort into the T1 generation, resulting in Mendellian combinations of transgene presence/absence and allelic states within the segregating family. This prediction, however, is not always consistent with observed results. RESULTS: In this study, we investigated inheritance patterns among three different CRISPR/Cas9 transgenes and their respective induced mutations in segregating soybean families. Next-generation resequencing of four T0 plants and four T1 progeny plants, followed by broader assessments of the segregating families, revealed both expected and unexpected patterns of inheritance among the different lineages. These unexpected patterns included: (1) A family in which T0 transgenes and mutations were not transmitted to progeny; (2) A family with four unlinked transgene insertions, including two respectively located at paralogous CRISPR target break sites; (3) A family in which mutations were observed and transmitted, but without evidence of transgene integration nor transmission. CONCLUSIONS: Genome resequencing provides high-resolution of transgene integration structures and gene editing events. Segregation patterns of these events can be complicated by several potential mechanisms. This includes, but is not limited to, plant chimeras, multiple unlinked transgene integrations, editing of intended and paralogous targets, linkage between the transgene integration and target site, and transient expression of the editing reagents without transgene integration into the host genome.


Assuntos
Sistemas CRISPR-Cas , Glycine max/genética , Mutação , Edição de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento , Transgenes
18.
Sci Rep ; 9(1): 14757, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611562

RESUMO

Developments in genomic and genome editing technologies have facilitated the mapping, cloning, and validation of genetic variants underlying trait variation. This study combined bulked-segregant analysis, array comparative genomic hybridization, and CRISPR/Cas9 methodologies to identify a CPR5 ortholog essential for proper trichome growth in soybean (Glycine max). A fast neutron mutant line exhibited short trichomes with smaller trichome nuclei compared to its parent line. A fast neutron-induced deletion was identified within an interval on chromosome 6 that co-segregated with the trichome phenotype. The deletion encompassed six gene models including an ortholog of Arabidopsis thaliana CPR5. CRISPR/Cas9 was used to mutate the CPR5 ortholog, resulting in five plants harboring a total of four different putative knockout alleles and two in-frame alleles. Phenotypic analysis of the mutants validated the candidate gene, and included intermediate phenotypes that co-segregated with the in-frame alleles. These findings demonstrate that the CPR5 ortholog is essential for proper growth and development of soybean trichomes, similar to observations in A. thaliana. Furthermore, this work demonstrates the value of using CRISPR/Cas9 to generate an allelic series and intermediate phenotypes for functional analysis of candidate genes and/or the development of novel traits.


Assuntos
Sistemas CRISPR-Cas , Glycine max/genética , Tricomas/genética , Alelos , Cromossomos de Plantas/genética , Edição de Genes , Genes de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Tricomas/crescimento & desenvolvimento
19.
BMC Plant Biol ; 19(1): 420, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604426

RESUMO

BACKGROUND: Soybean is subjected to genetic manipulation by breeding, mutation, and transgenic approaches to produce value-added quality traits. Among those genetic approaches, mutagenesis through fast neutrons radiation is intriguing because it yields a variety of mutations, including single/multiple gene deletions and/or duplications. Characterizing the seed composition of the fast neutron mutants and its relationship with gene mutation is useful towards understanding oil and protein traits in soybean. RESULTS: From a large population of fast neutron mutagenized plants, we selected ten mutants based on a screening of total oil and protein content using near infra-red spectroscopy. These ten mutants were regrown, and the seeds were analyzed for oil by GC-MS, protein profiling by SDS-PAGE and gene mapping by comparative genomic hybridization. The mutant 2R29C14Cladecr233cMN15 (nicknamed in this study as L10) showed higher protein and lower oil content compared to the wild type, followed by three other lines (nicknamed in this study as L03, L05, and L06). We characterized the fatty acid methyl esters profile of the trans-esterified oil and found the presence of five major fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids) at varying proportions among the mutants. Protein profile using SDS-PAGE of the ten mutants did exhibit discernable variation between storage (glycinin and ß-conglycinin) and anti-nutritional factor (trypsin inhibitor) proteins. In addition, we physically mapped the position of the gene deletions or duplications in each mutant using comparative genomic hybridization. CONCLUSION: Characterization of oil and protein profile in soybean fast neutron mutants will assist scientist and breeders to develop new value-added soybeans with improved protein and oil quality traits.


Assuntos
Nêutrons Rápidos , Glycine max/efeitos da radiação , Óleos de Plantas/análise , Proteínas de Plantas/análise , Sementes/química , Mutagênese , Mutação , Óleos de Plantas/efeitos da radiação , Proteínas de Plantas/efeitos da radiação , Sementes/efeitos da radiação , Glycine max/química , Glycine max/genética
20.
Plant J ; 100(5): 1066-1082, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433882

RESUMO

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.


Assuntos
Fabaceae/genética , Variação Genética , Genoma de Planta , Alelos , Centrômero/genética , Resistência à Doença/genética , Genética Populacional , Genótipo , Haplótipos , Dureza , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequências Repetitivas de Ácido Nucleico , Banco de Sementes/classificação , Inversão de Sequência , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...