Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 270(24): 14809-15, 1995 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-7782347

RESUMO

ADP-ribosylation factor 1 (Arf1) is an essential N-myristoylated 21-kDa GTP-binding protein with activities that include the regulation of membrane traffic and phospholipase D activity. Both the N terminus of the protein and the N-myristate bound to glycine 2 have previously been shown to be essential to the function of Arf in cells. We show that the bound nucleotide affects the conformation of either the N terminus or residues of Arf1 that are in direct contact with the N terminus. This was demonstrated by examining the effects of mutations in this N-terminal domain on guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) and GDP binding and dissociation kinetics. Arf1 mutants, lacking 13 or 17 residues from the N terminus or mutated at residues 3-7, had a greater affinity for GTP gamma S and a lower affinity for GDP than did the wild-type protein. As the N terminus is required for interactions with target proteins, we conclude that the N terminus of Arf1 is a GTP-sensitive effector domain. When Arf1 was acylated, the GTP-dependent conformational changes were codependent on added phospholipids. In the absence of phospholipids, myristoylated Arf1 has a lower affinity for GTP gamma S than for GDP, and in the presence of phospholipids, the myristoylated protein has a greater affinity for GTP gamma S than for GDP. Thus, N-myristoylation is a critical component in the construction of this phospholipid- and GTP-dependent switch.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Fosfolipídeos/metabolismo , Fator 1 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Acilação , Sequência de Aminoácidos , Linhagem Celular , Proteínas de Ligação ao GTP/genética , Guanosina Difosfato/metabolismo , Dados de Sequência Molecular , Mutação , Ácido Mirístico , Ácidos Mirísticos , Ligação Proteica
2.
J Biol Chem ; 270(9): 4792-6, 1995 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-7876252

RESUMO

The human immunodeficiency virus type 1 internal structural protein precursor, p55, and its corresponding matrix proteolytic fragment, p17, are phosphorylated at Ser111 by protein kinase C. COS-7 cells transfected with plasmids encoding either the wild-type or Ser111-->Ala mutated human immunodeficiency virus type 1 gag gene matrix domain proteins were treated with phorbol 12-myristate 13-acetate (PMA), and the phosphorylation of the expressed p17 proteins was examined by radioimmunoprecipitation, SDS-polyacrylamide gel electrophoresis, and autoradiography. PMA treatment of transfected cells resulted in a 4-5-fold increase in wild-type p17 (but not mutated p17) phosphorylation; however, mutated p17 exhibited a low basal level of phosphorylation that was not affected by PMA, suggesting that additional sites were phosphorylated. PMA treatment of cells expressing wild-type p17 produced a dramatic shift in the localization of p17 from the cytosol to the membrane fraction within 8-15 min, followed by a slow quantitative dissociation of p17 back into the cytosol by 90 min. The cytosol-to-membrane translocation was dependent on N-myristoylated p17 since cells expressing p17 with a Gly2-->Ala mutation did not localize to the membrane. PMA also failed to induce the translocation of fully N-myristoylated Ser111-->Ala p17, suggesting that p17 phosphorylation at Ser111 was responsible for membrane association. This conclusion was confirmed by the finding of phosphorylated wild-type p17 in the membrane fraction only after PMA treatment. These results suggest that a "myristoyl-protein switch" regulates the reversible membrane targeting of p17 by protein kinase C-mediated phosphorylation. This signal may provide a mechanism for the cellular regulation of virus development through modulation of gag protein-related developmental steps such as capsid targeting, assembly, encapsidation, budding, and maturation.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Proteína Quinase C/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Linhagem Celular , Ativação Enzimática , HIV-1/fisiologia , Dados de Sequência Molecular , Fosforilação , Frações Subcelulares/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Replicação Viral
3.
J Biol Chem ; 269(47): 29490-4, 1994 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-7961931

RESUMO

The role of the amino terminus in the actions of ADP-ribosylation factor 1 (ARF1) was examined by comparing wild type ARF1, a 13-residue NH2-terminal deletion mutant ([delta 13]ARF1), and a 17-residue NH2-terminal deletion mutant ([delta 17]ARF1). The amino-terminal 13 residues of ARF1 are required for cofactor activity in the ADP-ribosylation by cholera toxin when Gs is the substrate. This is in marked contrast to the finding that cofactor activity is the same for wild type and [delta 13]ARF1 when agmatine is substrate (Hong, J.-X., Haun, R. S., Tsai, S.-C., Moss, J., and Vaughan, M. (1994) J. Biol. Chem. 269, 9743-9745). These data support the conclusion that ARF1 interacts with both cholera toxin and Gs and that the amino terminus of ARF1 is required specifically for binding Gs. Surprisingly, this result also clearly revealed that the two principal assays for ARF activity, cofactor activity for cholera toxin using either Gs or agmatine as substrates, used for over 10 years in different laboratories, can yield quite different results. While both NH2-terminal deletion mutants failed to support the ADP-ribosylation of Gs by cholera toxin, [delta 13]ARF1, but not [delta 17]ARF1, inhibited the activity of the wild type protein. The GTPase activity of [delta 13]ARF1 was activated to a small extent by ARF GTPase-activating protein (GAP), whereas that of [delta 17]ARF1 was unaffected. We conclude that residues 14-17 are involved in the interaction of ARF with both cholera toxin and ARF GAP. The co-purifying nucleotides, nucleotide exchange kinetics, and dependence of exchange on phospholipids for the mutant proteins were all different from the wild type ARF1 proteins. The importance of monitoring the nucleotide binding to ARF proteins under the conditions used in the ARF assay and expressing ARF activities as specific activities, normalized to GTP binding sites, particularly when comparisons between different proteins or preparations are made, is discussed.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas/metabolismo , Fator 1 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Animais , Bovinos , Proteínas Ativadoras de GTPase , Mutação , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...