Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(12): 2935-2945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37380906

RESUMO

PURPOSE: Increased tablet anisotropy could lead to increased tablet capping propensity. Tooling design variables such as cup depth could serve as a key player for inducing tablet anisotropy. METHODS: A new capping index (CI) consisting of the ratio of compact anisotropic index (CAI) and material anisotropic index (MAI) is proposed to evaluate tablet capping propensity as a function of punch cup depth. CAI is the ratio of axial to radial breaking force. MAI is the ratio of axial to radial Young's modulus. The impact of various punch cup depths [flat face, flat face beveled edge, flat face radius edge, standard concave, shallow concave, compound concave, deep concave, and extra deep concave] on the capping propensity of model acetaminophen tablets was studied. Tablets were manufactured at 50, 100, 200, 250, and 300 MPa compression pressure at 20 RPM on different cup depth tools using Natoli NP-RD30 tablet press. A partial least squares model (PLS) was computed to model the impact of the cup depth and compression parameters on the CI. RESULTS: The PLS model exhibited a positive correlation of increased cup depth to the capping index. The finite elemental analysis confirmed that a high capping tendency with increased cup depth is a direct result of non-uniform stress distribution across powder bed. CONCLUSIONS: Certainly, a proposed new capping index with multivariate statistical analysis gives guidance in selecting tool design and compression parameters for robust tablets.


Assuntos
Acetaminofen , Fenômenos Mecânicos , Composição de Medicamentos , Pressão , Comprimidos
2.
Pharm Dev Technol ; 27(7): 805-815, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36047995

RESUMO

The novel modulus-based approach was developed to characterize the compression behavior of the materials and how it results into tablet mechanical strength (TMS) of the final tablet. The force-displacement profile for the model materials (Vivapur® 101, Starch 1500®, Emcompress®, and Tablettose® 100) was generated at different compression pressures (100, 150, and 200 MPa) and speeds (0.35, 0.55, and 0.75 m/s) using compaction emulator (Presster™). A generated continuous compression profile was evaluated with Heckel plot and the proposed material modulus method. The computed compression parameters were qualitatively and quantitatively correlated with TMS by principal component analysis and principal component regression, respectively. Compression modulus has negatively correlated, while decompression modulus is positively correlated to TMS. Proposed modulus descriptors are independent of particle density measurements required for the Heckel method and could overcome the limitations of the Heckel method to evaluate the decompression phase. Based on the outcome of the study, a two-dimensional compression and decompression modulus classification system (CDMCS) was proposed. The proposed CDMCS could be used to define critical material attributes in the early development stage or to understand reasons for tablet failure in the late development stage.


Assuntos
Química Farmacêutica , Amido , Química Farmacêutica/métodos , Descompressão , Pós , Comprimidos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...