Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 122938, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981185

RESUMO

Recent interest in microplastic pollution of natural environments has brought forth samples which confirm the pollutant's omnipresence in a variety of ecosystems. This includes locations furthest removed from human activity. Atmospheric transport and deposition are suspected as the primary transport pathway to these remote locations. The factors most influential on participation in atmospheric transport are yet to be determined. This meta-analysis aims to identify patterns that exist between physical characteristics of microplastic particles and their potential for atmospheric transport. Our review addresses the following questions: Which characteristics of microplastic particles promote atmospheric transport and deposition into remote regions, and how significant are these factors in determining distance transported from their sources? This article analyzes commonly reported physical attributes-- shape, polymer composition and color-- from studies in urban and remote areas. The analysis of 68 studies, composed of data from 2078 samples, shows higher occurrence of microplastic particles in remote samples with fiber shapes, polyester compositions, and red, blue, and transparent colors. This meta-analysis is the first to identify patterns between physical properties of microplastic particles and extent of their participation in atmospheric transport to global remote locations.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Nature ; 517(7533): 191-5, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25517098

RESUMO

Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

3.
Sci Rep ; 4: 6724, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25340551

RESUMO

Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably 'rubble pile' asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids.

4.
Sci Rep ; 3: 3487, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336641

RESUMO

Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.


Assuntos
Fósseis , Fungos , Sistema Solar , Ecossistema , Fenômenos Geológicos , Suécia
5.
Nature ; 468(7322): 426-30, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21085177

RESUMO

Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

6.
Isotopes Environ Health Stud ; 46(2): 180-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20582787

RESUMO

We have analysed the chemical and stable isotope compositions of four spring waters situated just northwest of the Hekla volcano, where cold water emerges from the base of the lava flows. The stable isotope ratios of water (H, O), dissolved inorganic carbon (C) and sulphate (S) were used to determine whether magmatic gases are mixing with the groundwater. The waters can be characterised as Na-HCO(3) type. The results show that deep-seated gases mix with groundwater, substantially affecting the concentration of solutes and the isotopic composition of dissolved carbon and sulphate.


Assuntos
Temperatura Baixa , Gases/química , Sedimentos Geológicos/química , Erupções Vulcânicas , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Carbono/análise , Hidrogênio/análise , Islândia , Oxigênio/análise , Bicarbonato de Sódio/análise , Sulfatos/análise
7.
Philos Trans A Math Phys Eng Sci ; 368(1919): 2519-34, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20403840

RESUMO

Pressure influences both magma production and the failure of magma chambers. Changes in pressure interact with the local tectonic settings and can affect magmatic activity. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems. The large pulse in volcanic production at the end of the last glaciation in Iceland suggests a link between unloading and volcanism, and models of that process can help to evaluate future scenarios. A viscoelastic model of glacio-isostatic adjustment that considers melt generation demonstrates how surface unloading may lead to a pulse in magmatic activity. Iceland's ice caps have been thinning since 1890 and glacial rebound at rates exceeding 20 mm yr(-1) is ongoing. Modelling predicts a significant amount of 'additional' magma generation under Iceland due to ice retreat. The unloading also influences stress conditions in shallow magma chambers, modifying their failure conditions in a manner that depends critically on ice retreat, the shape and depth of magma chambers as well as the compressibility of the magma. An annual cycle of land elevation in Iceland, due to seasonal variation of ice mass, indicates an annual modulation of failure conditions in subglacial magma chambers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...