Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732013

RESUMO

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Assuntos
Ácido Abscísico , Receptor ERRalfa Relacionado ao Estrogênio , Metabolismo Energético , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Humanos , Animais , Ácido Abscísico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390373

RESUMO

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Assuntos
Canais de Cátion TRPM , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
3.
Pharmaceutics ; 15(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140095

RESUMO

The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.

4.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37759995

RESUMO

The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.

5.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765125

RESUMO

Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.

6.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611438

RESUMO

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Assuntos
Carcinoma de Células Escamosas , Papiloma , Sirtuínas , Neoplasias Cutâneas , Animais , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogênese
7.
Lab Invest ; 103(3): 100037, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925196

RESUMO

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Assuntos
Trifosfato de Adenosina , Sarcoglicanopatias , Humanos , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatias/metabolismo , Transdução de Sinais , Receptores Purinérgicos P2Y2
8.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834900

RESUMO

The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.


Assuntos
Ácido Abscísico , Prótons , Animais , Humanos , Camundongos , Ácido Abscísico/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Hormônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674711

RESUMO

Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.


Assuntos
Diabetes Mellitus , Embriófitas , Animais , Humanos , Ácido Abscísico/metabolismo , Miócitos Cardíacos/metabolismo , Neuroproteção , Diabetes Mellitus/tratamento farmacológico , Reguladores de Crescimento de Plantas/fisiologia , Embriófitas/metabolismo , Hormônios , Mamíferos/metabolismo
10.
Cells ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497069

RESUMO

Boosting NAD+ levels are considered a promising means to promote healthy aging and ameliorate dysfunctional metabolism. The expression of CD38, the major NAD+-consuming enzyme, is downregulated during thermogenesis in both brown and white adipose tissues (BAT and WAT). Moreover, BAT activation and WAT "browning" were enhanced in Cd38-/- mice. In this study, the role of CD38 in the liver during thermogenesis was investigated, with the liver being the central organ controlling systemic energy metabolism. Wild-type mice and Cd38-/- mice were exposed to cold temperatures, and levels of metabolites and enzymes were measured in the livers and plasma. During cold exposure, CD38 expression was downregulated in the liver, as in BAT and WAT, with a concomitant increase in NAD(H) and a marked decrease in NADPH levels. Glucose-6-phosphate dehydrogenase and the malic enzyme, along with enzymes in the glycolytic pathway, were downregulated, which is in line with glucose-6-P being re-directed towards glucose release. In Cd38-/- mice, the cross-regulation between glycolysis and glucose release was lost, although this did not impair the glucose release from glycogen. Glycerol levels were decreased in the liver from Cd38-/- animals upon cold exposure, suggesting that glyceroneogenesis, as gluconeogenesis, was not properly activated in the absence of CD38. SIRT3 activity, regulating mitochondrial metabolism, was enhanced by cold exposure, whereas its activity was already high at a warm temperature in Cd38-/- mice and was not further increased by the cold. Notably, FGF21 and bile acid release was enhanced in the liver of Cd38-/- mice, which might contribute to enhanced BAT activation in Cd38-/- mice. These results demonstrate that CD38 inhibition can be suggested as a strategy to boost NAD+ and would not negatively affect hepatic functions during thermogenesis.


Assuntos
Glicólise , NAD , Animais , Camundongos , NAD/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Fígado/metabolismo
11.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078044

RESUMO

ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.


Assuntos
Fenômenos Biológicos , ADP-Ribose Cíclica , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD/metabolismo , Conexina 43/metabolismo , ADP-Ribose Cíclica/metabolismo , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo
12.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139463

RESUMO

Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.


Assuntos
Ácido Abscísico , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Abscísico/metabolismo , Animais , Glicemia/metabolismo , Hipóxia Celular , Hormônios/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , NADP/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Acoplados a Proteínas G , Sirtuína 1/metabolismo
13.
Metabolites ; 12(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35736456

RESUMO

Abscisic acid (ABA), a plant hormone, has recently been shown to play a role in glycemia regulation in mammals, by stimulating insulin-independent glucose uptake and metabolism in skeletal muscle. The aim of this study was to test whether ABA could improve glycemic control in a murine model of type 1 diabetes (T1D). Mice were rendered diabetic with streptozotocin and the effect of ABA administration, alone or with insulin, was tested on glycemia. Diabetic mice treated with a single oral dose of ABA and low-dose subcutaneous insulin showed a significantly reduced glycemia profile compared with controls treated with insulin alone. In diabetic mice treated for four weeks with ABA, the effect of low-dose insulin on the glycemia profile after glucose load was significantly improved, and transcription both of the insulin receptor, and of glycolytic enzymes in muscle, was increased. Moreover, a significantly increased transcription and protein expression of AMPK, PGC1-α, and GLUT4 was observed in the skeletal muscle from diabetic mice treated with ABA, compared with untreated controls. ABA supplementation in conjunction with insulin holds the promise of reducing the dose of insulin required in T1D, reducing the risk of hypoglycemia, and improving muscle insulin sensitivity and glucose consumption.

14.
Nutrients ; 13(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835990

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a fundamental molecule in the regulation of energy metabolism, representing both a coenzyme and a substrate for different NAD+ degrading enzymes. Among these enzymes, CD38 can be seen under two perspectives: as the enzyme synthesizing Ca2+-mobilizing second messenger, starting from NAD+, and as the major NAD+-consumer, to be inhibited to increase NAD+ levels. Indeed, the regulation of NAD+ availability is a key event during different processes. In this review, we examine the recent studies related to the modulation of CD38 expression and activity, and the consequent changes in NAD(P)(H), in adipose tissue, during inflammation and cold-induced thermogenesis.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Tecido Adiposo/metabolismo , Coenzimas/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Humanos , Modelos Biológicos , NAD/metabolismo , Termogênese
15.
Mol Metab ; 53: 101263, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34098144

RESUMO

OBJECTIVE: Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. METHODS: ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2-/- and wild-type (WT) siblings. RESULTS: Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 µM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2-/- mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 µg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). CONCLUSIONS: LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Abscísico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sirtuína 1/metabolismo , Glucose/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/genética
16.
Biofactors ; 47(1): 126-134, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33469985

RESUMO

Intraneuronal accumulation of hyperphosphorylated tau is a pathological hallmark of several neurodegenerative disorders, including Alzheimer's disease. Phosphorylation plays a crucial role in modulating the tau-microtubule interaction and the ability of the protein to aggregate, but despite efforts during the past decades, the real identity of the kynases involved in vivo remains uncertain. Here, for the first time, we demonstrate that the cGMP-dependent protein kinase G (PKG) phosphorylates tau in both in vitro and in vivo models. More intriguingly, we provide evidence that PKG phosphorylates tau at Ser214 but not at Ser202, a condition that could reduce the pathological aggregation of the protein shifting tau from a pro-aggregant to a neuroprotective anti-aggregant conformation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , GMP Cíclico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Agregados Proteicos , Ratos Sprague-Dawley , Serina/metabolismo , Treonina/metabolismo , Proteínas tau/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-33010451

RESUMO

Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.


Assuntos
ADP-Ribosil Ciclase 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glicoproteínas de Membrana/genética , NADP/metabolismo , NAD/metabolismo , RNA Mensageiro/genética , Termogênese/genética , ADP-Ribosil Ciclase 1/deficiência , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Temperatura Baixa , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Homeostase/genética , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
J Neuroinflammation ; 17(1): 228, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736564

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a neuroinflammatory and demyelinating disease characterized by multifocal perivascular infiltrates of immune cells. Although EAE is predominantly considered a T helper 1-driven autoimmune disease, mounting evidence suggests that activated dendritic cells (DC), which are the bridge between innate and adaptive immunity, also contribute to its pathogenesis. Sirtuin 6 (SIRT6), a NAD+-dependent deacetylase involved in genome maintenance and in metabolic homeostasis, regulates DC activation, and its pharmacological inhibition could, therefore, play a role in EAE development. METHODS: EAE was induced in female C57bl/6 mice by MOG35-55 injection. The effect of treatment with a small compound SIRT6 inhibitor, administered according to therapeutic and preventive protocols, was assessed by evaluating the clinical EAE score. SIRT6 inhibition was confirmed by Western blot analysis by assessing the acetylation of histone 3 lysine 9, a known SIRT6 substrate. The expression of DC activation and migration markers was evaluated by FACS in mouse lymph nodes. In addition, the expression of inflammatory and anti-inflammatory cytokines in the spinal cord were assessed by qPCR. T cell infiltration in spinal cords was evaluated by immunofluorescence imaging. The effect of Sirt6 inhibition on the migration of resting and activated bone marrow-derived dendritic cells was investigated in in vitro chemotaxis assays. RESULTS: Preventive pharmacological Sirt6 inhibition effectively delayed EAE disease onset through a novel regulatory mechanism, i.e., by reducing the representation of CXCR4-positive and of CXCR4/CCR7-double-positive DC in lymph nodes. The delay in EAE onset correlated with the early downregulation in the expression of CD40 on activated lymph node DC, with increased level of the anti-inflammatory cytokine IL-10, and with a reduced encephalitogenic T cell infiltration in the central nervous system. Consistent with the in vivo data, in vitro pharmacological Sirt6 inhibition in LPS-stimulated, bone marrow-derived DC reduced CCL19/CCL21- and SDF-1-induced DC migration. CONCLUSIONS: Our findings indicate the ability of Sirt6 inhibition to impair DC migration, to downregulate pathogenic T cell inflammatory responses and to delay EAE onset. Therefore, Sirt6 might represent a valuable target for developing novel therapeutic agents for the treatment of early stages of MS, or of other autoimmune disorders.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Quinazolinonas/uso terapêutico , Sirtuínas/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Quinazolinonas/farmacologia , Sulfonamidas/farmacologia , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia
19.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526875

RESUMO

Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a signal regulating cell responses to environmental challenges. In mammals, nanomolar ABA controls the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue with an insulin-independent mechanism and increasing energy expenditure in the brown and white adipose tissues. Activation by ABA of AMP-dependent kinase (AMPK), in contrast to the insulin-induced activation of AMPK-inhibiting Akt, is responsible for stimulation of GLUT4-mediated muscle glucose uptake, and for the browning effect on white adipocytes. Intake of micrograms per Kg body weight of ABA improves glucose tolerance in both normal and in borderline subjects and chronic intake of such a dose of ABA improves blood glucose, lipids and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and the metabolic syndrome. This review summarizes the most recent results obtained in vivo with microgram amounts of ABA, the role of the receptor LANCL2 in the hormone's action and the significance of the endowment by mammals of two different hormones controlling the metabolic response to glucose availability. Finally, open issues in need of further investigation and perspectives for the clinical use of nutraceutical ABA are discussed.


Assuntos
Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Síndrome Metabólica/prevenção & controle , Estado Pré-Diabético/prevenção & controle , Ácido Abscísico/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Gestacional/sangue , Feminino , Humanos , Inflamação , Insulina/metabolismo , Lipídeos/sangue , Proteínas de Membrana/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Gravidez , Transdução de Sinais
20.
Sci Rep ; 10(1): 1454, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996711

RESUMO

Abscisic acid (ABA) is a plant hormone active also in mammals where it regulates, at nanomolar concentrations, blood glucose homeostasis. Here we investigated the mechanism through which low-dose ABA controls glycemia and glucose fate. ABA stimulated uptake of the fluorescent glucose analog 2-NBDG by L6, and of [18F]-deoxy-glucose (FDG) by mouse skeletal muscle, in the absence of insulin, and both effects were abrogated by the specific AMPK inhibitor dorsomorphin. In L6, incubation with ABA increased phosphorylation of AMPK and upregulated PGC-1α expression. LANCL2 silencing reduced all these ABA-induced effects. In vivo, low-dose oral ABA stimulated glucose uptake and storage in the skeletal muscle of rats undergoing an oral glucose load, as detected by micro-PET. Chronic treatment with ABA significantly improved the AUC of glycemia and muscle glycogen content in CD1 mice exposed to a high-glucose diet. Finally, both acute and chronic ABA treatment of hypoinsulinemic TRPM2-/- mice ameliorated the glycemia profile and increased muscle glycogen storage. Altogether, these results suggest that low-dose oral ABA might be beneficial for pre-diabetic and diabetic subjects by increasing insulin-independent skeletal muscle glucose disposal through an AMPK-mediated mechanism.


Assuntos
Ácido Abscísico/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/patologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...