Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717600

RESUMO

A number of factors may impinge on thermal homeostasis in the early embryo. The most obvious is the ambient temperature in which development occurs. Physiologically, the temperature in the lumen of the female tract is typically lower than the core body temperature, yet rises at ovulation in the human, while in an IVF setting, embryos are usually maintained at core body temperature. However, internal cellular developmental processes may modulate thermal control within the embryo itself, especially those occurring in the mitochondria which generate intracellular heat through proton leak and provide the embryo with its own 'central heating system'. Moreover, mitochondrial movements may serve to buffer high local intracellular temperatures. It is also notable that the preimplantation stages of development would generate proportionally little heat within their mitochondria until the blastocyst stage as mitochondrial metabolism is comparatively low during the cleavage stages. Despite these data, the specific notion of thermal control of preimplantation development has received remarkably scant consideration. This opinion paper illustrates the lack of reliable quantitative data on these markers and identifies a major research agenda which needs to be addressed with urgency in view of laboratory conditions in which embryos are maintained as well as climate change-derived heat stress which has a negative effect on numerous clinical markers of early human embryo development.

5.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877936

RESUMO

Dynamic metabolism is exhibited by early mammalian embryos to support changing cell fates during development. It is widely acknowledged that metabolic pathways not only satisfy cellular energetic demands, but also play pivotal roles in the process of cell signalling, gene regulation, cell proliferation and differentiation. Recently, various new technological advances have been made in metabolomics and computational analysis, deepening our understanding of the crucial role of dynamic metabolism during early mammalian embryogenesis. In this Review, we summarize recent studies on oocyte and embryo metabolism and its regulation, with a particular focus on its association with key developmental events such as fertilization, zygote genome activation and cell fate determination. In addition, we discuss the mechanisms of certain metabolites that, in addition to serving as energy sources, contribute to epigenetic modifications.


Assuntos
Embrião de Mamíferos , Epigênese Genética , Animais , Diferenciação Celular , Proliferação de Células , Desenvolvimento Embrionário/genética , Mamíferos
7.
Front Physiol ; 13: 899485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634152

RESUMO

This article revisits the hypothesis, proposed in 2002, that the successful development of oocytes and preimplantation mammalian embryos is associated with a metabolism which is "quiet" rather than "active", within limits which had yet to be defined. A distinction was drawn between Functional Quietness, Loss of quietness in response to stress and Inter-individual differences in embryo metabolism and here we document applications of the hypothesis to other areas of reproductive biology. In order to encompass the requirement for "limits" and replace the simple distinction between "quiet" and "active", evidence is presented which led to a re-working of the hypothesis by proposing the existence of an optimal range of metabolic activity, termed a "Goldilocks zone", within which oocytes and embryos with maximum developmental potential will be located. General and specific mechanisms which may underlie the Goldilocks phenomenon are proposed and the added value that may be derived by expressing data on individual embryos as distributions rather than mean values is emphasised especially in the context of the response of early embryos to stress and to the concept of the Developmental Origins of Health and Disease. The article concludes with a cautionary note that being "quietly efficient" may not always ensure optimal embryo survival.

10.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948023

RESUMO

Investigating human platelet function in low-oxygen environments is important in multiple settings, including hypobaric hypoxia (e.g., high altitude), sea level hypoxia-related disease, and thrombus stability. These studies often involve drawing blood from which platelets are isolated and analysed at atmospheric conditions or re-exposed to low oxygen levels in hypoxia chambers before testing. However, it remains unknown how the in vitro handling of the samples itself changes their dissolved oxygen concentration, which might affect platelet function and experimental results. Here, we prepared healthy donor platelet-rich plasma and washed platelet (WP) suspensions and exposed them to 2% oxygen. We found that the use of hypoxia pre-equilibrated tubes, higher platelet concentrations (>2 × 108/mL versus 2 × 107/mL), smaller volumes (600 µL versus 3 mL), and presence of plasma reduced the time for samples to reach 2% oxygen. Notably, oxygen levels decreased below 2% in most suspensions, but also in WP maintained at atmospheric 21% oxygen. Additionally, platelet spreading on fibrinogen was decreased when using hypoxic fibrinogen-coated culture plates regardless of the oxygen percentage (2% or 21%) in which platelet incubation took place. Thus, sample handling and experimental conditions should be carefully monitored in platelet-hypoxia studies as they might compromise results interpretation and comparison across studies.


Assuntos
Plaquetas/fisiologia , Oxigênio/análise , Plasma Rico em Plaquetas/fisiologia , Atmosfera , Plaquetas/metabolismo , Hipóxia Celular , Hemostasia , Humanos , Oxigênio/farmacologia , Testes de Função Plaquetária , Plasma Rico em Plaquetas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34574797

RESUMO

Amino acids are now recognised as having multiple cellular functions in addition to their traditional role as constituents of proteins. This is well-illustrated in the early mammalian embryo where amino acids are now known to be involved in intermediary metabolism, as energy substrates, in signal transduction, osmoregulation and as intermediaries in numerous pathways which involve nitrogen metabolism, e.g., the biosynthesis of purines, pyrimidines, creatine and glutathione. The amino acid derivative S-adenosylmethionine has emerged as a universal methylating agent with a fundamental role in epigenetic regulation. Amino acids are now added routinely to preimplantation embryo culture media. This review examines the routes by which amino acids are supplied to the early embryo, focusing on the role of the oviduct epithelium, followed by an outline of their general fate and function within the embryo. Functions specific to individual amino acids are then considered. The importance of amino acids during the preimplantation period for maternal health and that of the conceptus long term, which has come from the developmental origins of health and disease concept of David Barker, is discussed and the review concludes by considering the potential utility of amino acid profiles as diagnostic of embryo health.


Assuntos
Aminoácidos , Epigênese Genética , Aminoácidos/metabolismo , Animais , Blastocisto/metabolismo , Meios de Cultura , Embrião de Mamíferos , Desenvolvimento Embrionário
12.
Hum Reprod ; 36(7): 1737-1750, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33963408

RESUMO

The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in pathological conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP). PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and growth factors, as well as a number of small molecules.The utility ofPRP has been investigatedin a range of regenerative medicine approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines. A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promising results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited.In this article, we summarise some of the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly, on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fundamental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is needed to fully understand this promising development.


Assuntos
Plasma Rico em Plaquetas , Insuficiência Ovariana Primária , Feminino , Humanos , Insuficiência Ovariana Primária/terapia , Rejuvenescimento , Reprodução
13.
Kidney Res Clin Pract ; 40(1): 89-98, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33745264

RESUMO

BACKGROUND: Concerns exist regarding the pro-oxidant and inflammatory potential of intravenous (IV) iron due to labile plasma iron (LPI) generation. This IRON-CKD trial compared the effects of different IV irons on oxidative stress and inflammation. METHODS: In this randomized open-label explorative single-center study in the United Kingdom, non-dialysis-dependent chronic kidney disease (CKD) patients with iron deficiency were randomized (1:1:1:1) to receive a single infusion of 200 mg iron dextran, or 200 mg iron sucrose (IS), or 200 mg or 1,000 mg ferric derisomaltose (FDI) and were followed up for 3 months. The primary outcomes measured were induction of oxidative stress and inflammation. Secondarily, efficacy, vascular function, quality of life, and safety were monitored. RESULTS: Forty patients were enrolled. No significant rise in oxidative stress existed, regardless of preparation or dose. There was a significant rise in LPI with 1,000 mg FDI at 2 hours that normalized within a week, not impacting oxidative stress or inflammation. A delayed rise in C-reactive protein was noted with IS. High-dose FDI produced a sustained serum ferritin increase (mean ± standard error of the mean of predose: 69.1 ± 18.4 µg/L, 3 months: 271.0 ± 83.3 µg/L; p = 0.007). Hemoglobin remained stable throughout. No adverse drug reactions were recorded during the study. CONCLUSION: A single dose of IV iron in CKD patients does not trigger oxidative stress or inflammation biomarkers. Third-generation IV irons have a reassuring safety profile, and high-dose FDI produced a sustained serum ferritin rise and more efficient iron repletion, with no significant pro-oxidant or inflammatory signals when compared to a lower dose and other IV irons.

14.
Molecules ; 25(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933160

RESUMO

BACKGROUND: Maintenance of the ratio of glutathione in the reduced (GSH) and oxidised (GSSG) state in cells is important in redox control, signal transduction and gene regulation, factors that are altered in many diseases. The accurate and reliable determination of GSH and GSSG simultaneously is a useful tool for oxidative stress determination. Measurement is limited primarily to the underestimation of GSH and overestimation GSSG as a result of auto-oxidation of GSH. The aim of this study was to overcome this limitation and develop, optimise and validate a reverse-phase high performance liquid chromatographic (HPLC) assay of GSH and GSSG for the determination of oxidant status in cardiac and chronic kidney diseases. METHODS: Fluorescence detection of the derivative, glutathione-O-pthaldialdehyde (OPA) adduct was used. The assay was validated by measuring the stability of glutathione and glutathione-OPA adduct under conditions that could affect the reproducibility including reaction time and temperature. Linearity, concentration range, limit of detection (LOD), limit of quantification (LOQ), recovery and extraction efficiency and selectivity of the method were assessed. RESULTS: There was excellent linearity for GSH (r2 = 0.998) and GSSG (r2 = 0.996) over concentration ranges of 0.1 µM-4 mM and 0.2 µM-0.4 mM respectively. The extraction of GSH from tissues was consistent and precise. The limit of detection for GSH and GSSG were 0.34 µM and 0.26 µM respectively whilst their limits of quantification were 1.14 µM and 0.88 µM respectively. CONCLUSION: These data validate a method for the simultaneous measurement of GSH and GSSG in samples extracted from biological tissues and offer a simple determination of redox status in clinical samples.


Assuntos
Glutationa/análise , Glutationa/metabolismo , Estresse Oxidativo , Extratos de Tecidos/análise , Extratos de Tecidos/metabolismo , Animais , Arginina/química , Osso e Ossos , Cromatografia Líquida de Alta Pressão/métodos , Coração , Peróxido de Hidrogênio/química , Rim , Limite de Detecção , Fígado , Masculino , Oxirredução , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/química , Reprodutibilidade dos Testes , o-Ftalaldeído/química
15.
Mol Reprod Dev ; 87(9): 930-933, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32853477

RESUMO

The purine hypoxanthine plays important role in regulating oocyte maturation and early embryonic development. The enzyme hypoxanthine phosphoribosyltransferase (HPRT) recycles hypoxanthine to generate substrates for nucleotide synthesis and key metabolites, and here we show that HPRT deficiency in the rat disrupts early embryonic development and causes infertility in females.


Assuntos
Infertilidade Feminina/etiologia , Síndrome de Lesch-Nyhan/complicações , Animais , Desenvolvimento Embrionário/genética , Feminino , Fertilidade/genética , Viabilidade Fetal/genética , Hipoxantina/metabolismo , Hipoxantina Fosforribosiltransferase/deficiência , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Infertilidade Feminina/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/patologia , Gravidez , Purinas/metabolismo , Ratos
16.
Reproduction ; 160(2): 227-237, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413850

RESUMO

The use of in vitro embryo production in the horse is increasing in clinical and research settings; however, protocols are yet to be optimised. Notably, the two most commonly used base media for in vitro maturation (IVM) supply glucose at markedly different concentrations: physiological (5.6 mM, M199) or supraphysiological (17 mM, DMEM/F-12). Exposure to high glucose has detrimental effects on oocytes and early embryos in many mammalian species, but the impact has not yet been examined in the horse. To address this, we compared the energy metabolism of equine COCs matured in M199-based maturation medium containing either 5.6 or 17 mM glucose, as well as expression of key genes in oocytes and cumulus cells. Oocytes were fertilised by ICSI and cultured. Analysis of spent medium revealed that COC glucose consumption and production of lactate and pyruvate were similar between treatments. However, the glycolytic index was decreased at 17 mM and analysis of mitochondrial function of COCs revealed that IVM in 17 mM glucose was associated with decreased ATP-coupled respiration and increased non-mitochondrial respiration compared to that for 5.6 mM glucose. We also found that the metabolic enzyme lactate dehydrogenase-A (LDHA) was downregulated in cumulus cells of oocytes that completed IVM in 17 mM glucose. There was no difference in maturation or blastocyst rates. These data indicate that COC mitochondrial function and gene expression are altered by high glucose concentration during IVM. Further work is needed to determine if these changes are associated with developmental changes in the resulting offspring.


Assuntos
Blastocisto/fisiologia , Células do Cúmulo/fisiologia , Glucose/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Meiose , Mitocôndrias/fisiologia , Oócitos/fisiologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Metabolismo Energético , Feminino , Fertilização in vitro , Glicólise , Cavalos , Mitocôndrias/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Edulcorantes/farmacologia
18.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121434

RESUMO

Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.


Assuntos
Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Proteínas/genética , Proteômica , Aminoácidos/metabolismo , Animais , Bovinos , Embrião de Mamíferos , Tubas Uterinas/metabolismo , Feminino , Oócitos/metabolismo , Oviductos/metabolismo , Gravidez , Proteínas/metabolismo
19.
Mol Hum Reprod ; 26(4): 277-287, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32059054

RESUMO

The pattern of metabolism by early embryos in vitro has been linked to a range of phenotypes, including viability. However, the extent to which metabolic function of embryos is modified by specific methods used during ART has yet to be fully described. This study has sought to determine if the mode of fertilization used to create embryos affects subsequent embryo metabolism of substrates. A metabolic profile, including consumption of key substrates and the endogenous triglyceride content of individual IVF and ICSI supernumerary embryos, was assessed and compared. Embryo development and quality was also recorded. All embryos were donated at a single clinical IVF center, on Day 5, from 36 patients aged 18-38 years, The data revealed that consumption of glucose and pyruvate, and production of lactate, did not differ between embryos created by IVF or ICSI. Similarly, the mode of insemination did not impact on the triglyceride content of embryos. However, ICSI-derived embryos displayed a more active turnover of amino acids (P = 0.023), compared to IVF embryos. The specific amino acids produced in higher quantities from ICSI compared to IVF embryos were aspartate (P = 0.016), asparagine (P = 0.04), histidine (P = 0.021) and threonine (P = 0.009) while leucine consumption was significantly lower (P = 0.04). However, importantly neither individual nor collective differences in amino acid metabolism were apparent for sibling oocytes subjected to either mode of fertilization. Embryo morphology (the number of top grade embryos) and development (proportion reaching the blastocyst stage) were comparable in patients undergoing IVF and ICSI. In conclusion, the microinjection of spermatozoa into oocytes does not appear to have an impact on subsequent metabolism and viability. Observed differences in amino acid metabolism may be attributed to male factor infertility of the patients rather than the ICSI procedure per se.


Assuntos
Embrião de Mamíferos/metabolismo , Fertilização , Metaboloma , Adulto , Aminoácidos/metabolismo , Estudos de Coortes , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Glucose/metabolismo , Humanos , Lactatos/metabolismo , Masculino , Ácido Pirúvico/metabolismo , Injeções de Esperma Intracitoplásmicas , Triglicerídeos/metabolismo
20.
Sci Rep ; 9(1): 16778, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727902

RESUMO

Mitochondria provide the major source of ATP for mammalian oocyte maturation and early embryo development. Oxygen Consumption Rate (OCR) is an established measure of mitochondrial function. OCR by mammalian oocytes and embryos has generally been restricted to overall uptake and detailed understanding of the components of OCR dedicated to specific molecular events remains lacking. Here, extracellular flux analysis (EFA) was applied to small groups of bovine, equine, mouse and human oocytes and bovine early embryos to measure OCR and its components. Using EFA, we report the changes in mitochondrial activity during the processes of oocyte maturation, fertilisation, and pre-implantation development to blastocyst stage in response to physiological demands in mammalian embryos. Crucially, we describe the real time partitioning of overall OCR to spare capacity, proton leak, non-mitochondrial and coupled respiration - showing that while activity changes over the course of development in response to physiological demand, the overall efficiency is unchanged. EFA is shown to be able to measure mitochondrial function in small groups of mammalian oocytes and embryos in a manner which is robust, rapid and easy to use. EFA is non-invasive and allows real-time determination of the impact of compounds on OCR, facilitating an assessment of the components of mitochondrial activity. This provides proof-of-concept for EFA as an accessible system with which to study mammalian oocyte and embryo metabolism.


Assuntos
Técnicas Biossensoriais/métodos , Embrião de Mamíferos/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Animais , Bovinos , Desenvolvimento Embrionário , Feminino , Fertilização , Cavalos , Humanos , Camundongos , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...