Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(27)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537277

RESUMO

Tantalum pentoxide (Ta2O5) is among the most technologically useful heavy transition metal oxides. Unfortunately, its crystal structure is the subject of long-standing and unresolved disagreement. Among other consequences, this uncertainty has made it impossible to formulate a robust high pressure equation of state for Ta2O5. Here, we report the results of high pressure x-ray diffraction experiments indexed against a comprehensive list of proposed Ta2O5phases. Five of the proposed phases produce good matches to experimental observations, and the compressibility parameters for these phases are all consistent within uncertainty. This means that regardless of the particular phase chosen, the Ta2O5equation of state can be described with bulk modulusK0=138±3.68 GPa and pressure derivativeK0'=1.82±0.45. Combining these experimental results with new density-functional theory calculations allows us to identify theλphase as the best structural model of Ta2O5at ambient conditions.

2.
Rev Sci Instrum ; 92(10): 103901, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717419

RESUMO

We developed tools and a workflow for real-time analysis of data from dynamic diamond anvil cell experiments performed at user light sources. These tools allow users to determine the phases of matter observed during the compression of materials in order to make decisions during an experiment to improve the quality of experimental results and maximize the use of scarce experimental facility time. The tools fill a gap in dynamic compression data analysis tools that are real-time, are flexible to the needs of high-pressure scientists, connect to automated processing of results, can be easily incorporated into workflows with existing tools and data formats, and support remote experimental data analysis workflows. Specific analytics developed include novel automated two-peak analysis for overlapping peaks and multiple phases, coordinated views of pressure and temperature values, full-compression contour plots, and configurable views of integrated x-ray diffraction. We present an experimental use case to show how the tools produce real-time analytics that help the scientists revise parameters for the next compression.

3.
J Phys Chem Lett ; 12(12): 3246-3252, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764078

RESUMO

The ultrafast synthesis of ε-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of α- to γ-iron. Ultimately, the Fe and N2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.

4.
Rev Sci Instrum ; 91(7): 075115, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752829

RESUMO

A broadband wavelet approach to ultrasonic pulse-echo time-of-flight measurements is described. The broadband approach significantly reduces the time required for frequency-dependent pulse-echo measurements, enabling studies of dynamic systems ranging from biological systems to solid-state phase transitions. The described broadband approach is demonstrated in parallel with the more traditional frequency stepping approach to perform ultrasound time-of-flight measurements inside a large volume Paris-Edinburgh press in situ at a synchrotron source. The broadband wavelet data acquisition process was found to be 1-2 orders of magnitude faster than the stepped-frequency approach, with no compromise on data quality or determined results.

5.
J Phys Condens Matter ; 32(35): 355402, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32330909

RESUMO

In this report, we present results of high-pressure experiments probing the melt line of zirconium (Zr) up to 37 GPa. This investigation has determined that temperature versus laser power curves provide an accurate method to determine melt temperatures. When this information is combined with the onset of diffuse scattering, which is associated with the melt process, we demonstrate the ability to accurately determine the melt boundary. This presents a reliable method for rapid determination of melt boundary and agrees well with other established techniques for such measurements, as reported in previous works on Zr.

6.
J Phys Condens Matter ; 32(12): 12LT02, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31796651

RESUMO

Zirconium (Zr) has properties conducive to nuclear applications and exhibits complex behavior at high pressure with respect to the effects of impurities, deviatoric stress, kinetics, and grain growth which makes it scientifically interesting. Here, we present experimental results on the 300 K equation of state of ultra-high purity Zr obtained using the diamond-anvil cell coupled with synchrotron-based x-ray diffraction and electrical resistance measurements. Based on quasi-hydrostatic room-temperature compression in helium to pressure P = 69.4(2) GPa, we constrain the bulk modulus and its pressure derivative of body-centered cubic (bcc) ß-Zr to be K = 224(2) GPa and K' = 2.6(1) at P = 37.0(1) GPa. A Monte Carlo approach was developed to accurately quantify the uncertainties in K and K'. In the Monte Carlo simulations, both the unit-cell volume and pressure vary according to their experimental uncertainty. Our high-pressure studies do not indicate additional isostructural volume collapse in the bcc phase of Zr in the 56-58 GPa pressure range.

7.
J Acoust Soc Am ; 140(4): 2810, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794352

RESUMO

A simple and inexpensive approach to acquiring signals in the megahertz frequency range using a smartphone is described. The approach is general, applicable to electromagnetic as well as acoustic measurements, and makes available to undergraduate teaching laboratories experiments that are traditionally inaccessible due to the expensive equipment that are required. This paper focuses on megahertz range ultrasonic resonance spectra in liquids and solids, although there is virtually no upper limit on frequencies measurable using this technique. Acoustic resonance measurements in water and Fluorinert in a one dimensional (1D) resonant cavity were conducted and used to calculate sound speed. The technique is shown to have a precision and accuracy significantly better than one percent in liquid sound speed. Measurements of 3D resonances in an isotropic solid sphere were also made and used to determine the bulk and shear moduli of the sample. The elastic moduli determined from the solid resonance measurements agreed with those determined using a research grade vector network analyzer to better than 0.5%. The apparatus and measurement technique described can thus make research grade measurements using standardly available laboratory equipment for a cost that is two-to-three orders of magnitude less than the traditional measurement equipment used for these measurements.

8.
J Acoust Soc Am ; 138(1): EL31-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233057

RESUMO

This work reports on the determination of the acoustic nonlinearity parameter, B/A, from measured sound speed data, in Fluorinert FC-43 at temperatures up to 381 K and pressures up to 13.8 MPa using the thermodynamic method. Sound speed was measured using Swept Frequency Acoustic Interferometry at 11 pressures between ambient and 13.8 MPa along 6 isotherms between ambient and 381 K. Second-order least-squares polynomial fits of measured sound speeds were used to determine temperature and pressure dependence. A room temperature B/A = 11.7 was determined and this parameter was found to increase by a factor of 2.5 over the temperature/pressure range investigated.

9.
Rev Sci Instrum ; 83(11): 115106, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206097

RESUMO

This paper reports on the development of a compact, rugged, and portable measurement cell design for the determination of liquid sound speed at temperatures up to 250 °C and pressures up to 3000 psi. Although a significant amount of work exists in the literature on the characterization of fluids, primarily pure water, over a wide range of pressures and temperatures, the availability of experimentally determined sound speed in water between 100 °C and 250 °C is very limited. The need to measure sound speed in liquids up to 250 °C is of both fundamental interest, as in the case of basic equations of state, and applied interest, such as for characterizing geothermal or petroleum downhole environments. The measurement cell reported here represents an advancement in the established room temperature swept frequency acoustic interferometry measurement for liquid sound speed determinations. The paper details the selection of materials suitable for high temperature operation and the construction of the measurement apparatus. Representative sound speeds as a function of temperature and pressure are presented and are shown to be in very good agreement with an internationally accepted standard for water sound speed.

10.
Artigo em Inglês | MEDLINE | ID: mdl-20211767

RESUMO

This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

11.
Artigo em Inglês | MEDLINE | ID: mdl-19406707

RESUMO

This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.


Assuntos
Acústica , Cerâmica , Sistemas Microeletromecânicos , Modelos Químicos , Espalhamento de Radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...