Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 139: 103691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744091

RESUMO

The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae , Proteína com Valosina , Proteína com Valosina/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular
3.
FEBS Lett ; 597(22): 2833-2850, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805446

RESUMO

Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.


Assuntos
Poro Nuclear , Ubiquitina , Poro Nuclear/genética , Poro Nuclear/metabolismo , Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Reparo do DNA , Ubiquitinação , Sumoilação
4.
EMBO J ; 42(13): e113609, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144685

RESUMO

DNA-protein crosslinks (DPCs) pose a serious threat to genome stability. The yeast proteases Wss1, 26S proteasome, and Ddi1 are safeguards of genome integrity by acting on a plethora of DNA-bound proteins in different cellular contexts. The AAA ATPase Cdc48/p97 is known to assist Wss1/SPRTN in clearing DNA-bound complexes; however, its contribution to DPC proteolysis remains unclear. Here, we show that the Cdc48 adaptor Ubx5 is detrimental in yeast mutants defective in DPC processing. Using an inducible site-specific crosslink, we show that Ubx5 accumulates at persistent DPC lesions in the absence of Wss1, which prevents their efficient removal from the DNA. Abolishing Cdc48 binding or complete loss of Ubx5 suppresses sensitivity of wss1∆ cells to DPC-inducing agents by favoring alternate repair pathways. We provide evidence for cooperation of Ubx5-Cdc48 and Wss1 in the genotoxin-induced degradation of RNA polymerase II (RNAPII), a described candidate substrate of Wss1. We propose that Ubx5-Cdc48 assists Wss1 for proteolysis of a subset of DNA-bound proteins. Together, our findings reveal a central role for Ubx5 in DPC clearance and repair.


Assuntos
Reparo do DNA , Saccharomyces cerevisiae , DNA/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas
5.
PLoS Genet ; 18(10): e1010432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215302

RESUMO

Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Histonas/genética , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Cromatina/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , RNA Antissenso/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica
6.
Nucleic Acids Res ; 50(8): 4515-4528, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474134

RESUMO

Eukaryotic genomes are pervasively transcribed by RNA polymerase II (RNAPII), and transcription of long non-coding RNAs often overlaps with coding gene promoters. This might lead to coding gene repression in a process named Transcription Interference (TI). In Saccharomyces cerevisiae, TI is mainly driven by antisense non-coding transcription and occurs through re-shaping of promoter Nucleosome-Depleted Regions (NDRs). In this study, we developed a genetic screen to identify new players involved in Antisense-Mediated Transcription Interference (AMTI). Among the candidates, we found the HIR histone chaperone complex known to be involved in de novo histone deposition. Using genome-wide approaches, we reveal that HIR-dependent histone deposition represses the promoters of SAGA-dependent genes via antisense non-coding transcription. However, while antisense transcription is enriched at promoters of SAGA-dependent genes, this feature is not sufficient to define the mode of gene regulation. We further show that the balance between HIR-dependent nucleosome incorporation and transcription factor binding at promoters directs transcription into a SAGA- or TFIID-dependent regulation. This study sheds light on a new connection between antisense non-coding transcription and the nature of coding transcription initiation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
7.
Cell Rep ; 37(8): 110034, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818558

RESUMO

Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Cisteína Endopeptidases/metabolismo , DNA/metabolismo , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Diester Fosfórico Hidrolases/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Sumoilação/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
8.
Cell Rep ; 31(5): 107612, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375040

RESUMO

Eukaryotic genomes are almost entirely transcribed by RNA polymerase II. Consequently, the transcription of long noncoding RNAs often overlaps with coding gene promoters, triggering potential gene repression through a poorly characterized mechanism of transcription interference. Here, we propose a comprehensive model of chromatin-based transcription interference in Saccharomyces cerevisiae (S. cerevisiae). By using a noncoding transcription-inducible strain, we analyze the relationship between antisense elongation and coding sense repression, nucleosome occupancy, and transcription-associated histone modifications using near-base pair resolution techniques. We show that antisense noncoding transcription leads to the deacetylation of a subpopulation of -1/+1 nucleosomes associated with increased H3K36me3. Reduced acetylation results in the decreased binding of the RSC chromatin remodeler at -1/+1 nucleosomes and subsequent sliding into the nucleosome-depleted region hindering pre-initiation complex association. Finally, we extend our model by showing that natural antisense noncoding transcription significantly represses ∼20% of S. cerevisiae genes through this chromatin-based transcription interference mechanism.


Assuntos
Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Montagem e Desmontagem da Cromatina/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
9.
Mol Cell ; 77(5): 1066-1079.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31902667

RESUMO

Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera , Transcrição Gênica
10.
Curr Genet ; 66(1): 63-71, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31292684

RESUMO

The mRNA export adaptor Yra1 is essential in S. cerevisiae, and conserved from yeast to human (ALY/REF). It is well characterized for its function during transcription elongation, 3' processing and mRNA export. Recently, different studies linked Yra1 to genome stability showing that Yra1 overexpression causes DNA Double Strand Breaks through DNA:RNA hybrids stabilization, and that Yra1 depletion affects DSB repair. However, the mechanisms through which Yra1 contributes to genome stability maintenance are not fully understood. Interestingly, our results showed that the Yra1 C-box domain is required for Yra1 recruitment to an HO-induced irreparable DSB following extensive resection, and that it is essential to repair an HO-induced reparable DSB. Furthermore, we defined that the C-box domain of Yra1 plays a crucial role in DSB repair through homologous recombination but not through non-homologous end joining. Future studies aim at deciphering the mechanism by which Yra1 contributes to DSB repair by searching for Yra1 partners important for this process. This review focuses on the functional complexity of the Yra1 protein, not only summarizing its role in mRNA biogenesis but also emphasizing its auto-regulation and implication in genome integrity either through DNA:RNA hybrids stabilization or DNA double strand break repair in S. cerevisiae.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Íntrons , Proteínas Nucleares/genética , Ligação Proteica , Estruturas R-Loop , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Bioessays ; 41(11): e1900043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31577043

RESUMO

RNA polymerase II (RNAP II) non-coding transcription is now known to cover almost the entire eukaryotic genome, a phenomenon referred to as pervasive transcription. As a consequence, regions previously thought to be non-transcribed are subject to the passage of RNAP II and its associated proteins for histone modification. This is the case for the nucleosome-depleted regions (NDRs), which provide key sites of entry into the chromatin for proteins required for the initiation of coding gene transcription and DNA replication. In this review, recent data on the effects of pervasive transcription through NDRs are summarized and a model is proposed to explain how RNAP II-driven transcription is able to modify the nucleosomes flanking the NDRs, leading to nucleosome repositioning and NDR closure. Even though much of the mechanistic detail underlying these events remains to be elucidated, such a model provides a basis to explain how non-coding transcription through NDRs can regulate the initiation of coding gene expression and DNA replication.


Assuntos
Cromatina/genética , Replicação do DNA/genética , Expressão Gênica/genética , Nucleossomos/genética , RNA não Traduzido/genética , Transcrição Gênica/genética , Humanos , RNA Polimerase II/genética
12.
PLoS One ; 14(4): e0206336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30951522

RESUMO

Yra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Here, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. We further show that Yra1 binds an HO-induced irreparable DSB in a process dependent on resection. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. While Yra1 sumoylation and/or ubiquitination are dispensable, the Yra1 C-box region is essential in this process.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Genome Res ; 28(12): 1882-1893, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30401734

RESUMO

In eukaryotic organisms, replication initiation follows a temporal program. Among the parameters that regulate this program in Saccharomyces cerevisiae, chromatin structure has been at the center of attention without considering the contribution of transcription. Here, we revisit the replication initiation program in the light of widespread genomic noncoding transcription. We find that noncoding RNA transcription termination in the vicinity of autonomously replicating sequences (ARSs) shields replication initiation from transcriptional readthrough. Consistently, high natural nascent transcription correlates with low ARS efficiency and late replication timing. High readthrough transcription is also linked to increased nucleosome occupancy and high levels of H3K36me3. Moreover, forcing ARS readthrough transcription promotes these chromatin features. Finally, replication initiation defects induced by increased transcriptional readthrough are partially rescued in the absence of H3K36 methylation. Altogether, these observations indicate that natural noncoding transcription into ARSs influences replication initiation through chromatin regulation.


Assuntos
Cromatina/genética , Replicação do DNA , Regulação da Expressão Gênica , RNA não Traduzido , Acetilação , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Nucleossomos/metabolismo , RNA Mensageiro/genética , Origem de Replicação , Saccharomyces cerevisiae/genética , Transcrição Gênica
14.
Sci Rep ; 7(1): 13055, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026143

RESUMO

Polymerase eta (Polη) is a low fidelity translesion synthesis DNA polymerase that rescues damage-stalled replication by inserting deoxy-ribonucleotides opposite DNA damage sites resulting in error-free or mutagenic damage bypass. In this study we identify a new specific RNA extension activity of Polη of Saccharomyces cerevisiae. We show that Polη is able to extend RNA primers in the presence of ribonucleotides (rNTPs), and that these reactions are an order of magnitude more efficient than the misinsertion of rNTPs into DNA. Moreover, during RNA extension Polη performs error-free bypass of the 8-oxoguanine and thymine dimer DNA lesions, though with a 103 and 102-fold lower efficiency, respectively, than it synthesizes opposite undamaged nucleotides. Furthermore, in vivo experiments demonstrate that the transcription of several genes is affected by the lack of Polη, and that Polη is enriched over actively transcribed regions. Moreover, inactivation of its polymerase activity causes similar transcription inhibition as the absence of Polη. In summary, these results suggest that the new RNA synthetic activity of Polη can have in vivo relevance.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/genética , Cinética , Nucleotídeos/metabolismo , RNA/metabolismo , Saccharomyces cerevisiae/genética
15.
Curr Opin Cell Biol ; 34: 16-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935760

RESUMO

The number and variety of factors underlying control of gene expression have been frequently underestimated. Non-coding RNAs generated through pervasive transcription have recently been implicated in shaping the transcriptional landscape in different organisms from bacteria to higher eukaryotes, adding a previously unexpected layer of complexity to the process of gene regulation. In this review, we highlight non-coding transcription-dependent regulatory mechanisms linked to chromatin organization and environmental changes, and particular emphasis is given to single-cell approaches, which have been crucial in dissecting cell-to-cell variability. These studies have revealed that non-coding transcription can underlie the extensive heterogeneity in patterns of gene expression within a cell population.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , RNA não Traduzido/genética , Sobrevivência Celular , Genoma
16.
Chromosoma ; 124(1): 45-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25171917

RESUMO

Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.


Assuntos
Regulação da Expressão Gênica , Poro Nuclear/fisiologia , Sumoilação , Transcrição Gênica , Animais , Ordem dos Genes , Poro Nuclear/genética , Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 42(7): 4348-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497191

RESUMO

Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , RNA Antissenso/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Histona-Lisina N-Metiltransferase/fisiologia , Simportadores de Próton-Fosfato/genética , RNA Antissenso/biossíntese , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
18.
Mol Cell ; 51(6): 807-18, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074957

RESUMO

Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation. Moreover, artificial tethering of the Ulp1 catalytic domain to the GAL1 locus enhances the derepression kinetics. Our results also indicate that Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed genes, and that a loss of Ssn6 sumoylation correlates with an increase in GAL1 derepression kinetics. Altogether, our data highlight a role for the NPC-associated SUMO protease Ulp1 in regulating the sumoylation of gene-bound transcription regulators, positively affecting transcription kinetics in the context of the NPC.


Assuntos
Cisteína Endopeptidases/genética , Galactoquinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Galactoquinase/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ativação Transcricional
19.
Nat Struct Mol Biol ; 20(7): 851-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23770821

RESUMO

Many Saccharomyces cerevisiae genes encode antisense transcripts, some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense (AS) RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single-molecule resolution fluorescent in situ hybridization (smFISH) to investigate antisense-mediated transcription regulation. We show that PHO84 AS RNA acts as a bimodal switch, in which continuous, low-frequency antisense transcription represses sense expression within individual cells. Surprisingly, antisense RNAs do not accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, rather than stabilizing PHO84 AS RNA, the loss of Rrp6 favors its elongation by reducing early transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 silencing results from antisense transcription through the promoter rather than the static accumulation of antisense RNAs at the repressed gene.


Assuntos
Regulação Fúngica da Expressão Gênica , Simportadores de Próton-Fosfato/genética , RNA Antissenso/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , DNA Helicases/fisiologia , Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia , Histona Desacetilases/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Hibridização in Situ Fluorescente , Metaloendopeptidases/fisiologia , Modelos Genéticos , Complexos Multiproteicos , Proteínas Nucleares/fisiologia , Poliadenilação , Polinucleotídeo Adenililtransferase/fisiologia , Regiões Promotoras Genéticas/genética , Simportadores de Próton-Fosfato/biossíntese , RNA Helicases/fisiologia , RNA Antissenso/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia
20.
Nucleus ; 4(2): 92-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514951

RESUMO

Gene loops have been described in different organisms from yeast to human and form through interaction between components of the transcription pre-initiation complex and Ssu72, a member of the 3' end cleavage and polyadenylation complex. A recent study by Tan-Wong et al. reports a new role for gene loops in promoting ORF transcription directionality from otherwise bidirectional promoters.


Assuntos
Histona Desacetilases/genética , Regiões Promotoras Genéticas , RNA/genética , Transcrição Gênica , Acetilação , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...