Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Reprod Biomed Online ; 49(2): 103853, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865783

RESUMO

RESEARCH QUESTION: How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN: Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS: In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS: The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.

2.
Hum Reprod ; 39(3): 578-585, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268234

RESUMO

STUDY QUESTION: What is the temporal activity and the concentration in follicular fluid (FF) of the anti-inflammatory steroid cortisol during the ovulatory process in humans? SUMMARY ANSWER: Intrafollicular concentrations of cortisol become massively upregulated close to ovulation concomitant with an exceptionally high biological activity securing a timely and efficient termination of inflammatory processes. WHAT IS KNOWN ALREADY: Ovulation has been described as a local, controlled inflammatory process resulting in the degeneration of the follicle wall which facilitate oocyte extrusion. Ovulation also affects the glucocorticoid metabolism of granulosa cells (GCs) and although de novo synthesis of cortisol only occurs in the adrenal cortex, the mid-cycle surge has been shown to induce a change from high expression of HSD11B2, inactivating cortisol to cortisone, to high expression of HSD11B1 which reversibly catalyses cortisol production from cortisone. Furthermore, high concentrations of progesterone and 17OH-progesterone within follicles may cause dislodging of cortisol from cortisol binding protein (CBP) thereby activating the biological activity of cortisol. STUDY DESIGN, SIZE, DURATION: This prospective cohort study included 50 women undergoing fertility treatment according to a standard antagonist protocol at a university hospital-affiliated fertility clinic in Denmark. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women donated FF and GCs from one follicle for research purpose aspirated at one of four time points during the process of final maturation of follicles: T = 0 h, T = 12 h, T = 17 h, T = 32 h. A second sample was collected at oocyte pick up at T = 36 h. The concentration of cortisol and cortisone together with a range of sex steroids was measured by LC-MS/MS in FF collected at the five time points mentioned above. Whole genome microarray data, validated by q-PCR analysis, was used to evaluate gene expression of CYP11B1, CYP21A2, HSD11B1, HSD11B2, and NR3C1 in GCs at the same time points. MAIN RESULTS AND THE ROLE OF CHANCE: The concentration of cortisol was significantly increased from a few nM at 0 h to around 100-140 nM (P ≤ 0.0001) at 32-36 h, whilst cortisone was almost constant from 0 to 17 h at a concentration of between 90 and 100 nM being significantly reduced to 25-40 nM (P ≤ 0.0001) at 32-36 h. This was paralleled by a 690-fold upregulation of HSD11B1 from 0 to 12 h increasing to a more than 20.000-fold change at 36 h. HSD11B2 was quickly downregulated 15- to 20-fold after ovulation induction. Concentrations of progesterone and 17OH-progesterone increased during the ovulatory process to high levels which in essence displaces cortisol from its binding protein CBP due to similar binding affinities. Furthermore, a significant decrease in 11-deoxycortisol expression was seen, but CYP11B1 expression was below detection limit in GCs. LIMITATIONS, REASONS FOR CAUTION: The study included women undergoing ovarian stimulation and results may differ from the natural cycle. More observations at each specific time point may have strengthened the conclusions. Furthermore, we have not been able to measure the actual active biological concentration of cortisol. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, this study collectively evaluated the temporal pattern of cortisol and cortisone concentrations during human ovulation, rendering a physiological framework for understanding potential dysregulations in the inflammatory reaction of ovulation. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the University Hospital of Copenhagen, Rigshospitalet, and Novo Nordisk Foundation grant number NNF21OC00700556. Interreg V ÔKS through ReproUnion (www.reprounion.eu); Region Zealand Research Foundation. The funders had no role in study design, collection of data, analyses, writing of the article, or the decision to submit it for publication. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Cortisona , Progesterona , Feminino , Humanos , Progesterona/metabolismo , Hidrocortisona , Estudos Prospectivos , Esteroide 11-beta-Hidroxilase , Cromatografia Líquida , Fertilização in vitro/métodos , Espectrometria de Massas em Tandem , Ovulação , Indução da Ovulação/métodos , Esteroide 21-Hidroxilase
3.
Trop Biomed ; 39(2): 257-264, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838100

RESUMO

Newcastle Disease (ND) is a highly pathogenic disease of avian species which is caused by Newcastle Disease Virus (NDV). It is one of the major causes of mortality and morbidity to poultry industry in the third world countries. Currently, there is no treatment measures against ND; the only existing measure is vaccination, though it is incapable to offer 100% immunity. In Tanzania, the leaves of Synadenium glaucescens Pax. are traditionally used for treatment of various ailments including ND. Previously, its leaves extract has been scientifically confirmed to exhibit anti-NDV activity though bioactive compound(s) responsible for this activity is/are unknown. Therefore, this study was aimed to evaluate anti-NDV activity of 3ß-Friedelanol (1) and 3α-friedelanol (2) isolated from its leaves extract. Isolation of these compounds was achieved by column chromatography method whereas, their chemical structures were determined by Nuclear Magnetic Resonance (NMR) data and by comparing with the available literature NMR data. Anti-NDV activity study was done in embryonated chicken eggs (ECEs). Treatment of NDV inoculated ECEs with 3ß-Friedelanol (1) reduced the viral load to zero and maintained the survival of embryos, this was revealed by continuous organs formation and increase in embryo weights with no significant different (p > 0.05) from un-inoculated ECE. These effects suggest that, 3ß-Friedelanol (1) possesses anti-NDV activity. Therefore, existence of 3ß-Friedelanol (1) in the leaves of S. glaucescens may justify its earlier described anti-NDV activity and traditional use in the treatment of ND. Hence, its leaves extract may be considered for development of anti-NDV herbal formulation while 3ß-Friedelanol could either serve as a drug or lead compound for synthesis of anti-NDV drugs.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Triterpenos , Animais , Galinhas , Doença de Newcastle/tratamento farmacológico , Vírus da Doença de Newcastle , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/farmacologia
4.
Tropical Biomedicine ; : 257-264, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-940061

RESUMO

@#Newcastle Disease (ND) is a highly pathogenic disease of avian species which is caused by Newcastle Disease Virus (NDV). It is one of the major causes of mortality and morbidity to poultry industry in the third world countries. Currently, there is no treatment measures against ND; the only existing measure is vaccination, though it is incapable to offer 100% immunity. In Tanzania, the leaves of Synadenium glaucescens Pax. are traditionally used for treatment of various ailments including ND. Previously, its leaves extract has been scientifically confirmed to exhibit anti-NDV activity though bioactive compound(s) responsible for this activity is/are unknown. Therefore, this study was aimed to evaluate anti-NDV activity of 3β-Friedelanol (1) and 3α-friedelanol (2) isolated from its leaves extract. Isolation of these compounds was achieved by column chromatography method whereas, their chemical structures were determined by Nuclear Magnetic Resonance (NMR) data and by comparing with the available literature NMR data. Anti-NDV activity study was done in embryonated chicken eggs (ECEs). Treatment of NDV inoculated ECEs with 3β-Friedelanol (1) reduced the viral load to zero and maintained the survival of embryos, this was revealed by continuous organs formation and increase in embryo weights with no significant different (p > 0.05) from un-inoculated ECE. These effects suggest that, 3β-Friedelanol (1) possesses anti-NDV activity. Therefore, existence of 3β-Friedelanol (1) in the leaves of S. glaucescens may justify its earlier described anti-NDV activity and traditional use in the treatment of ND. Hence, its leaves extract may be considered for development of anti-NDV herbal formulation while 3β-Friedelanol could either serve as a drug or lead compound for synthesis of anti-NDV drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...