Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(25): 8527-31, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19485362

RESUMO

By means of time-resolved photoluminescence and photothermal techniques, after-effects from excited-state dynamics, energy migration, and conformational rearrangement of poly(9,9-di-n-octyl-2,7-fluorene) (PFO) and its homologues has been examined and interpreted with rotational potential maps from quantum mechanical calculations. Steady-state photoluminescence spectral changes and time-resolved photoluminescence measurements of oligofluorenes and PFO diluted in toluene suggest excited state ring torsion occurring within 30 ps of photoexitation. With all effects from internal conversion/intersystem crossing processes properly accounted for, we show that the conformational changes associated with this twisting motion can be quantitatively probed by means of photothermal methods. Results suggest mean torsion between neighboring fluorene units by ca. 40 degrees upon excitation, in agreement with the shift of rotational potential minimum from +/-40 degrees (and +/-140 degrees) in the ground state to +/-20 degrees (and +/-160 degrees) in the first excited singlet state according to results of quantum mechanical calculations.


Assuntos
Fluorenos/química , Absorção , Luminescência , Conformação Molecular , Fótons , Rotação , Espectrometria de Fluorescência , Temperatura
2.
J Phys Chem B ; 111(43): 12345-50, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17929859

RESUMO

Phase behavior and morphological features of regioregular, n-type semiconducting poly(4-alkyl-2,6-quinoline)s were examined in detail via a combination of thermal, microscopic, and diffraction methods. Two members (P4OQ and P4DQ, with n-octyl and n-decyl substitutions, respectively) in this series were selected as representatives. Results indicate the dominance of lamellar mesophase throughout the experimentally accessed temperature range (from ambient to above 300 degrees C), with lamellar spacing well-correlated with side-chain length and temperature. Optical textures observed via polarized light microscopy reveal clear domain-wall features in P4OQ but more solid-like characteristics for P4DQ; improved lamellar order was also observed for P4DQ as compared to P4OQ. These signify stronger tendency toward supramolecular self-assembly with increasing side-chain length. A model of molecular arrangement in the lamellar mesophase in which the free volume is identified as the gap between tips of extended (and interdigitated) side chains and the backbone of the neighboring chain is proposed to account for the observed variation of layer spacing with side-chain length and temperature. The presence of nanodomains (similar to those previously reported for p-type conjugated polymers) is also identified in the present n-type series, implying general existence of this inherent morphological heterogeneity in semiconducting hairy-rod polymers. This means that molecular aggregation is determined solely by ground-state intermolecular forces; differences in carrier transport characteristics are irrelevant during morphological development. Origins of these nanodomains are discussed in terms of backbone folding (via inherent chemical defects or elastic bending) as well as fringed-micelle aggregates.

3.
J Phys Chem B ; 110(9): 4007-13, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509690

RESUMO

Here we report the phase behavior of poly(9,9-di-n-hexyl-2,7-fluorene) (PFH), which previously received little attention as compared to its homologues poly(9,9-di-n-octyl-2,7-fluorene) (PFO) and poly(9,9-di-(2'-ethylhexyl)-2,7-fluorene) (PFEH). By means of differential scanning calorimetry, X-ray diffraction, and electron microscopy, we show that there exist four different phases in PFH. The as-cast film is mainly composed of a mesomorphic beta phase with layer spacing of ca. 1.4 nm. This beta phase is inherently metastable and, upon heating above 175 degrees C, transforms into a crystalline (alpha) form that melts into a nematic (N) liquid above 250 degrees C. Upon stepwise cooling, the nematic melt crystallizes into the alpha phase first, followed by solid-solid transformation into another crystalline (alpha') form. Unit cell structure of the alpha form is monoclinic whereas that of the alpha' form is triclinic, but departures from strict orthogonality are slight (by ca. 6 degrees). These observations not only support our previous assignment of two crystalline forms (both orthorhombic in structure) in PFO but also provide insights to the crystalline nature of the polyfluorene series.

4.
J Phys Chem B ; 109(20): 10067-72, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852218

RESUMO

Selective formation of amorphous, nematic (N), and beta phases in poly(9,9-di-n-octyl-2,7-fluorene) (PFO) films was achieved via judicious choice of process parameters. Phase structure and film morphology were carefully examined by means of X-ray diffraction as well as electron microscopy. "Amorphous" thin films were obtained by quick evaporation of solvent. Slow solvent removal during film formation or extended treatment of the amorphous film with solvent vapor resulted in predominantly the beta phase, which corresponds to a frozen (due to decreased segmental mobility upon solvent removal) and intrinsically metastable state of transformation midway between a solvent-induced clathrate phase and the equilibrium crystalline order in the undiluted state. The frozen transformation process is reactivated upon an increase in temperature beyond 100 degrees C. Compared to the amorphous film, extended backbone conjugation in the beta phase is evidenced from the emergence of a characteristic absorption peak around 430 nm near the absorption edge. For films of frozen nematic order (obtained by quenching from the nematic state), the conjugation length is also greater than the amorphous films as revealed by an absorption shoulder around 420 nm. Well-behaved single-chromophore emission with single-mode phonon coupling was observed for the beta phase; in the case of nematic films, dual-mode phonon coupling must exist if single-chromophore emission is assumed. In comparison, the emission spectrum of the amorphous film of generally shorter conjugation lengths exhibited mixed characteristics of nematic and beta phases, implying the presence of minor populations of extended conjugation similar to those in nematic and beta phases, which are of biased weightings in the emission spectra. All these films consist of nanograins (ca. 10 nm in size) of collapsed chains; the films are therefore inherently inhomogeneous in this length scale. In combination with previous observations on the crystalline (alpha and alpha') forms, the phase behavior of PFO is then generally summarized in terms of relative thermodynamic stability.

5.
Langmuir ; 20(20): 8909-15, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379526

RESUMO

Morphological effects in luminescence properties of a representative semiconducting polymer, poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), has recently attracted much attention. Previous studies indicated that short-term heat treatment of solution-cast MEH-PPV films may result in the formation of mesomorphic order that is responsible for the "red" emission around 640 nm, in contrast to the single-chromophore "yellow" emission near 590 nm from the disordered matrix. On the basis of microscopic and spectroscopic evidence for films cast from freshly prepared and aged solutions, here we show that prolonged storage of MEHyellowPPV solutions at room temperature or lower may result in retardation of the thermally induced mesophase formation in the subsequently cast films. According to small-angle neutron scattering and differential scanning calorimetric observations over aged MEH-PPV/toluene solutions, we propose that the suppressed transformation into mesomorphic order is due to further development of nanocrystalline aggregates that serve as physical cross-links among MEH-PPV chains in the solution state upon long-term storage. These solvent-induced nanocrystalline aggregates, however, do not exhibit new spectroscopic features beyond the suppression of "red" emission at 640 nm from the mesomorphic phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...