Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(4): 1271-1279, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226548

RESUMO

T4 polynucleotide kinase helps with DNA recombination and repair. In this study, an electrochemical biosensor was developed for a T4 polynucleotide kinase activity assay and inhibitor screening based on phosphate pillar[5]arene and multi-walled carbon nanotube nanocomposites. The water-soluble pillar[5]arene was employed as the host to complex thionine guest molecules. The substrate DNA with a 5'-hydroxyl group initially self-assembled on the gold electrode surface through chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 polynucleotide kinase. Titanium dioxide nanoparticles served as a bridge to link phosphorylated DNA and phosphate pillar[5]arene and multi-walled carbon nanotube composite due to strong phosphate-Ti4+-phosphate chemistry. Through supramolecular host-guest recognition, thionine molecules were able to penetrate the pillar[5]arene cavity, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 polynucleotide kinase concentration in the range of 10-5 to 15 U mL-1 with a detection limit of 5 × 10-6 U mL-1. It was also effective in measuring HeLa cell lysate-related T4 polynucleotide kinase activity and inhibitor screening. The proposed method offers a unique sensing platform for kinase activity measurement, holding great potential in nucleotide kinase-target drug development, clinical diagnostics, and inhibitor screening.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Fenotiazinas , Humanos , Polinucleotídeo 5'-Hidroxiquinase , Nanotubos de Carbono/química , Fosfatos , Células HeLa , DNA/química , Técnicas Biossensoriais/métodos
2.
Mikrochim Acta ; 190(10): 394, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715009

RESUMO

T4 polynucleotide kinase (T4 PNK) helps with DNA recombination and repair. In this work, a phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite (PP5@PdNPs@rGO)-based electrochemical biosensor was created to identify T4 PNK activities. The PP5 used to complex toluidine blue (TB) guest molecules is water-soluble. With T4 PNK and ATP, the substrate DNA, which included a 5'-hydroxyl group, initially self-assembled over the gold electrode surface by chemical adsorption of the thiol units. Strong phosphate-Zr4+-phosphate chemistry allowed Zr4+ to act as a bridge between phosphorylated DNA and PP5@PdNPs@rGO. Through a supramolecular host-guest recognition connection, TB molecules were able to penetrate the PP5 cavity, where they produced a stronger electrochemical response. With a 5 × 10-7 U mL-1 detection limit, the electrochemical signal is linear in the 10-6 to 1 U mL-1 T4 PNK concentration range. It was also effective in measuring HeLa cell lysate-related PNK activities and screening PNK inhibitors. Nucleotide kinase-target drug development, clinical diagnostics, and screening for inhibitors all stand to benefit greatly from the suggested technology, which offers a unique sensing mechanism for kinase activity measurement.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Humanos , Paládio , Fosfatos , Células HeLa , Polinucleotídeo 5'-Hidroxiquinase , Cloreto de Tolônio
3.
Talanta ; 260: 124612, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141826

RESUMO

Protein kinase A (PKA) can regulate many cellular biological processes by phosphorylation substrate peptide or protein. Sensitive detection of PKA activity is critical for the PKA-related drug discovery and disease diagnosis. A new electrochemical biosensing method was developed for detection of PKA activity based on Zr4+-mediated DNAzyme-driven DNA walker signal amplification strategy. In this strategy, the special designed substrate peptide and a thiolated methylene blue-labeled hairpin DNA (MB-hpDNA) containing a single ribonucleic acid group (rA) could be anchored on the surface of gold electrode by Au-S bond. In the presence of adenosine triphosphate (ATP) and PKA, substrate peptide was phosphorylated and linked with walker DNA (WD) via the robust phosphate-Zr4+-phosphate chemistry. The linked WD hybridized with the loop region of MB-hpDNA to form a Mn2+-dependent deoxynuclease (DNAzyme), which cleaved the MB-hpDNA into MB-labeled fragment releasing away from electrode surface, resulting in a dramatic decrease of electrochemical signal and providing an electrochemical sensing platform for PKA activity detection. The response signal of the developed biosensor is proportional to the logarithm of PKA concentration in the range of 0.05 U mL-1 to 100 U mL-1, with a detection limit of 0.017 U mL-1 at a signal to noise ratio of 3. Furthermore, the proposed method can also be applied for the evaluation of PKA inhibition and PKA activity assay in cell samples. Therefore, the proposed biosensor shows great promise as a universal tool for diagnostics and drug discovery of PKA-related diseases.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Fosforilação , DNA Catalítico/química , DNA/genética , Técnicas Eletroquímicas , Peptídeos/química , Técnicas Biossensoriais/métodos , Ouro/química , Proteínas Quinases Dependentes de AMP Cíclico , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...