Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38358871

RESUMO

Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the generalized few-shot open-set object detection (G-FOOD), which aims to avoid detecting unknown classes as known classes with a high confidence score while maintaining the performance of few-shot detection. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new G-FOOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any threshold, prototype, or generation. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the F-score of unknown classes by 4.80%-9.08% across all shots in VOC-COCO dataset settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...