Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998383

RESUMO

This paper aims to investigate the strengthening mechanism of laser shock peening on the interfacial bonding properties between TiN coatings and TC4 titanium alloy substrates. The different surface textures were induced by LSP on a TC4 titanium alloy substrate. Subsequently, titanium nitride (TiN) coatings were deposited on the surface texture. A scratch test and reciprocating sliding wear assessment were conducted to evaluate the impact of LSP on the interfacial bonding properties and wear performance of the coatings. The experimental results demonstrated that the adhesion of TiN coatings deposited on the surface texture formed by laser shock peening was significantly enhanced. The efficacy of laser shock treatment in reducing wear rates was found to be significantly enhanced in cases of both increased spot overlapping rate and increased laser power density. The surface texture created using laser parameters of 6.43 GW/cm2 and a 50% overlapping rate was found to have the most significant effect on improving the adhesion and anti-wear properties of the coating. The laser shock texture was identified as the main contributor to this improvement, providing a large interfacial contact area and a mechanical bond between the coating and the substrate. This bond inhibited the initiation and propagation of micro-cracks caused by the concentration of internal stress and interfacial stress of the coating.

2.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297196

RESUMO

Annular laser metal deposition (ALMD) is a rising technology that fabricates near-net-shaped components. In this research, a single factor experiment with 18 groups was designed to study the influence of process parameters on the geometric characteristics (bead width, bead height, fusion depth, and fusion line) and thermal history of Ti6Al4V tracks. The results show that discontinuous and uneven tracks with pores or large-sized incomplete fusion defects were observed when the laser power was less than 800 W or the defocus distance was -5 mm. The laser power had a positive effect on the bead width and height, while the scanning speed had the opposite effect. The shape of the fusion line varied at different defocus distances, and the straight fusion line could be obtained with the appropriate process parameters. The scanning speed was the parameter that had the greatest effect on the molten pool lifetime and solidification time as well as the cooling rate. In addition, the microstructure and microhardness of the thin wall sample were also studied. Many clusters with various sizes in different zones were distributed within the crystal. The microhardness ranged from 330 HV to 370 HV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...