Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 78(11): 3877-3890, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510225

RESUMO

Huagaimu (Manglietiastrum sinicum) trees are critically endangered species and classified as a plant species with extremely small populations in China. Rhizospheres and bulk soils prokaryotic communities play an important role to protect and promote plants health and growth. However, the compositions and structures of prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils are still poorly understood. In the present study, prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils were compared using high-throughput sequencing. Thirty-two phyla, 76 classes, 193 orders, 296 families, and 470 genera of prokaryotes were obtained. Proteobacteria and Acidobacteria were the two most abundant phyla in all soil samples. The compositions and structures of prokaryotic communities were overall similar, and the abundance of some taxa varied significantly among soil samples. Soil prokaryotic communities were significantly affected by soil pH, total nitrogen, total phosphorus, and total potassium. Eleven of predicted functions were significantly different among the four soil groups. This study provides for the first insights into the compositions, structures, and potential functions of prokaryotic communities associated with wild and reintroduced M. sinicum rhizospheres and bulk soils, and providing a foundation for future research to help protect this endangered species.


Assuntos
Espécies em Perigo de Extinção , Rizosfera , Acidobacteria , Animais , Humanos , Células Procarióticas , Solo
2.
Can J Microbiol ; 66(5): 359-367, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32053399

RESUMO

The magnitude of the impact of altitude gradient on microbial community and diversity has been studied in recent decades. Whereas bacteria have been the focus of most studies, fungi have been given relatively less attention. As a vital part of the macro- and microscopic ecosystem, rhizosphere fungi play a key role in organic matter decomposition and relative abundance of plant species and have an impact on plant growth and development. Using Duchesnea indica as the host plant, we examined the rhizosphere soil fungal community patterns across the altitude gradient in 15 sites of Yunnan province by sequencing the fungal ITS2 region with the Illumina MiSeq platform. We determined the fungal community composition and structure. We found that, surprisingly, rhizosphere soil fungal diversity of D. indica increased with altitudinal gradient. There was a slight difference in diversity between samples from high- and medium-altitude sites, with medium-altitude sites having the greater diversity. Furthermore, the rhizosphere soil fungal community composition and structure kept changing along the altitudinal gradient. Taxonomic results showed that the extent of phylum diversity was greatest at high-altitude sites, with Ascomycota, Basidiomycota, Zygomycota, and Glomeromycota as the most dominant fungal phyla.


Assuntos
Altitude , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , Rosaceae/microbiologia , Microbiologia do Solo , Biodiversidade , China , Ecossistema , Micobioma , Rizosfera , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...