Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202401108, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022814

RESUMO

The development of advanced electrocatalysts for the abiotic direct glucose fuel cells (ADGFCs) is critical in the implantable devices in living organisms. The ligand effect in the Pt shell-alloy core nanocatalysts is known to influence the electrocatalytic reaction in interfacial structure. Herein, we reported the synthesis of ternary Pt@PdRu nanoalloy aerogels with ligand effect of PdRu on Pt-enriched surface through electrochemical cycling. Pt@PdRu aerogels with optimized Pt surface electronic structure exhibited high mass activity and specific activity of Pt@PdRu about 450 mA·mgPt-1 and 1.09 mA·cm-2, which were 1.4 and 1.6 times than that of commercial Pt/C. Meanwhile, Pt@PdRu aerogels have higher electrochemical stability comparable to commercial Pt/C. In-situ FTIR spectra results proved that the glucose oxidation reaction on Pt@PdRu aerogels followed the CO-free direct pathway reaction mechanism and part of the products are CO2 by completed oxidation. Furthermore, the ADGFC with Pt@PdRu ultrathin anode catalyst layer showed a much higher power density of 6.2 mW·cm-2 than commercial Pt/C (3.8 mW·cm-2). To simulate the blood fuel cell, the Pt@PdRu integrated membrane electrode assembly was exposed to glucose solution and a steady-state open circuit of approximately 0.6 V was achieved by optimizing the glucose concentration in cell system.

2.
Micromachines (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399018

RESUMO

A two-channel, time-wavelength interleaved photonic analog-to-digital converter (PADC) system with a sampling rate of 10.4 GSa/s was established, and a concise method for measuring and data correcting the channel sampling timing walk-off of PADCs for signal recovery was proposed. The measurements show that for the two RF signals of f1 = 100 MHz and f2 = 200 MHz, the channel sampling timing walk-off was 12 sampling periods, which results in an ENOB = -0.1051 bits for the 100 MHz directly synthesized signal, while the ENOB improved up to 4.0136 bits using shift synthesis. In addition, the peak limit method (PLM) and normalization processing were introduced to reduce the impacts of signal peak jitter and power inconsistency between two channels, which further improve the ENOB of the 100 MHz signal up to 4.5668 bits. All signals were analyzed and discussed in both time and frequency domains. The 21.1 GHz signal was also collected and converted using the established two-channel PADC system with the data correction method, combining the PLM, normalization, and shift synthesis, showing that the ENOB increased from the initial -0.9181 to 4.1913 bits, which demonstrates that our method can be effectively used for signal recovery in channel-interleaved PADCs.

3.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38138324

RESUMO

The effects of optical sampling pulse power, RF power, and electronic back-end bandwidth on the performance of time- and wavelength-interleaved photonic analog-to-digital converter (PADC) with eight-channel 41.6 GHz pulses have been experimentally investigated in detail. The effective number of bits (ENOB) and peak-to-peak voltage (Vpp) of converted 10.6 GHz electrical signals were used to characterize the effects. For the 1550.116 nm channel with 5.2 G samples per second, an average pulse power of 0 to -10 dBm input to the photoelectric detector (PD) has been tested. The Vpp increased with increasing pulse power. And the ENOB for pulse power -9~-3 dBm was almost the same and all were greater than four. Meanwhile, the ENOB decreased either when the pulse power was more than -2 dBm due to the saturation of PD or when the pulse power was less than -10 dBm due to the non-ignorable noise relative to the converted weak signal. In addition, RF powers of -10~15 dBm were loaded into the Mach-Zehnder modulator (MZM). The Vpp increased with the increase in RF power, and the ENOB also showed an increasing trend. However, higher RF power can saturate the PD and induce greater nonlinearity in MZM, leading to a decrease in ENOB, while lower RF power will convert weak electrical signals with more noise, also resulting in lower ENOB. In addition, the back-end bandwidths of 0.2~8 GHz were studied in the experiments. The Vpp decreased as the back-end bandwidth decreased from 8 to 3 GHz, and remained nearly constant for the bandwidth between the Nyquist bandwidth and the subsampled RF signal frequency. The ENOB was almost the same and all greater than four for a bandwidth from 3 to 8 GHz, and gradually increased up to 6.5 as the back-end bandwidth decreased from the Nyquist bandwidth to 0.25 GHz. A bandwidth slightly larger than the Nyquist bandwidth was recommended for low costs and without compromising performance. In our experiment, the -3 to -5 dBm average pulse power, about 10 dBm RF power, and 3 GHz back-end bandwidth were recommended to accomplish both a high ENOB more than four and large Vpp. Our research provides a solution for selecting optical sampling pulse power, RF power, and electronic back-end bandwidth to achieve low-cost and high-performance PADC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...