Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 457: 140115, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905839

RESUMO

Lactobacillus strains have emerged as promising probiotics for enhancing the bioactivities of plant-based foods associated with flavonoid biotransformation. Employing microbial fermentation and mass spectrometry, we explored flavonoid metabolism in lychee pulp fermented separately by Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Two novel metabolites, 3,5,7-trihydroxychromone and catechol, were exclusively identified in L. plantarum-fermented pulp. Concomitant with consumption of catechin and quercetin glycosides, dihydroquercetin glycosides, 2,4-dihydroxybenzoic acid and p-hydroxyphenyllactic acid were synthesized by two strains through hydrogenation and fission of C-ring. Quantitative analysis revealed that bound phenolics were primarily located in water-insoluble polysaccharides in lychee pulp. Quercetin 3-O-rutinoside was partially liberated from water-insoluble polysaccharides and migrated to water-soluble polysaccharides during fermentation. Meanwhile, substantial accumulations in short-chain fatty acids (increased 1.45 to 3.08-fold) and viable strains (increased by 1.97 to 2.00 Log10 CFU/mL) were observed in fermentative pulp. These findings provide broader insight into microbial biotransformation of phenolics and possible guidance for personalized nutrition.

2.
Food Chem ; 453: 139630, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781895

RESUMO

Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.


Assuntos
Colo , Ácidos Cumáricos , Emulsões , Fermentação , Ovalbumina , Polissacarídeos , Colo/metabolismo , Colo/microbiologia , Emulsões/química , Emulsões/metabolismo , Ovalbumina/química , Ovalbumina/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Rutina/química , Rutina/metabolismo , Masculino
3.
J Sci Food Agric ; 104(5): 3139-3146, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38072776

RESUMO

BACKGROUND: Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS: An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION: SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.


Assuntos
Citrus , Flavonoides , Fenóis , Propionatos , Flavonoides/química , Citrus/química , Antioxidantes/metabolismo , Fermentação , Fibras na Dieta
4.
J Agric Food Chem ; 71(41): 15087-15096, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814441

RESUMO

This study aimed to investigate the effects of the lychee pulp-derived dietary fiber-bound phenolic complex (DF-BPC) on a murine model of loperamide-induced constipation and its molecular mechanism associated with gut microbiota modification. DF-BPC supplementation mitigated loperamide-induced dyschezia, intestinal hypomotility, and colonic impairment, as evidenced by the increased gastro-intestinal transit rate and mucus cell counts. By comparison, short-chain fatty acids (SCFAs) contents and relative abundances of associated genera (Butyricimonas, Clostridium, and Lactobacillus) were effectively upregulated following DF-BPC supplementation. Notably, DF-BPC significantly enhanced expressions of G protein-coupled receptor (GPR) 41 and 43, reaching 1.43- and 1.62-fold increase, respectively. Neurotransmitter secretions were simultaneously altered in DF-BPC-treated mice, suggesting upregulation of the SCFAs-GPRs-enteric nervous system pathway. The overexpression of aquaporins (AQP3, 8, and 9) was stimulated partly through GPRs activation. Mild inflammation associated with constipation was inhibited by suppressing LBP-TLR4-NF-κB signaling translocation. These findings suggest that DF-BPC from lychee pulp has the potential to alleviate constipation in mice through modifying the gut microbiome.


Assuntos
Aquaporinas , Microbioma Gastrointestinal , Litchi , Camundongos , Animais , Loperamida/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Ácidos Graxos Voláteis/farmacologia , Fibras na Dieta , Aquaporinas/genética
5.
Int J Biol Macromol ; 250: 126258, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567519

RESUMO

Our study investigated heat pump drying (HPD) effects on phenolic-polysaccharide adducts of three lychee pulp grades, their composition and bound phenolic contents. During HPD, the hexose content in water soluble polysaccharide (WSP) increased continuously, and the pentose and glucuronic acid contents in WSP and dilute alkali soluble pectin (ASP) together with the hexose content in ASP increased initially and then decreased due to polysaccharide hydrolases pectinase, polygalacturonase and cellulase. After HPD, the bound phenolic content in WSP, ASP and water unextractable polysaccharide (WUP) significantly increased. Protocatechualdehyde and 3,4-dihydroxybenzeneacetic acid were newly generated phenolics and the former combined with all the three polysaccharide grades, while the latter selectively combined with only WSP. During HPD, WSP and ASP surface structures were gradually broken and became loose, but WUP surface structure was a complete and rough sheet structure. Alkaline hydrolysis caused sparser, more porous surfaces of the three polysaccharide grades. The polyphenol selectivity could be related to substrate selectivity of endogenous oxidases and the type of phenolic compounds.


Assuntos
Litchi , Espectrometria de Massas em Tandem , Litchi/química , Temperatura Alta , Fenóis/química , Polissacarídeos/química , Água/química , Hexoses
6.
Food Funct ; 14(16): 7672-7681, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37540108

RESUMO

Lychee pulp phenolics possess excellent biological activities, however, changes in phenolic substances after microbial treatments are unknown. Herein, lychee pulp was fermented by Lactobacillus plantarum, Lactobacillus rhamnosus, and a mixed strain of the two, followed by an investigation of the products' colonic fermentation. In comparison to single-strain fermentation, mixed-strain fermentation significantly increased catechin and quercetin. In addition, lychee phenolics fermented by mixed strains were more conducive to the growth of gut microbiota. The results of HPLC-DAD showed that colonic fermentation further promoted the release of lychee phenolics. There was a notable increase in the content of gallic acid and quercetin, while multiple phenolics were degraded. Quercetin-3-O-rutinose-7-O-α-L-rhamnoside (QRR) and rutin were catabolized into quercetin by gut microbiota, and 4-hydroxybenzoic acid was produced from the metabolism of QRR and procyanidin B2. Lychee phenolics fermented by mixed lactic acid bacteria were easily metabolized and transformed by gut microbiota. These findings indicate that lychee pulp fermented by mixed lactic acid bacteria possesses probiotic potential, which is of great significance for the development of functional probiotic products.

7.
Food Chem ; 429: 136875, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454621

RESUMO

Quercetin 3-O-rutinose-7-O-α-l-rhamnoside (QRR), a characteristic lychee pulp flavonoid, has been linked to diverse bioactivities involving microbial metabolism. By integrating colonic fermentation and mass spectrometry, the catabolites including 7-O-hydroxyethyl-isorhamnetin and 3'-amino-4'-O-methyl-7-O-hydroxyethyl-isorhamnetin were unprecedently identified and unique to QRR metabolism, relative to the structural analog quercetin 3-O-rutinoside (QR) metabolism. These above-described metabolites highlighted a special biotransformation hydroxyethylation in QRR catabolism. QRR was partially deglycosylated into quercetin 3-O-glucoside-7-O-α-l-rhamnoside potentially catalyzed by Bacteroides. QR was more directly degradable to aglycone during colonic fermentation than are QRR. Unlike with QR fermentation, equivalent QRR effectively upregulated concentrations of propionic and butyric acids that were highly relevant with Faecalibacterium and Coprococcus. After fermentation, the relative abundances of Bacteroides uniformis (0.03%) and Akkermansia muciniphila (0.13%) were only upregulated by QRR among all fermentation groups, leading to the enrichments of the corresponding genera. These results further reveal the relationship between flavonoid structures and metabolic characteristics.


Assuntos
Microbioma Gastrointestinal , Litchi , Flavonóis , Quercetina/análise , Litchi/química , Fermentação , Flavonoides
8.
Food Chem ; 410: 135384, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610094

RESUMO

Magnetic nanometer combined with microwave thawing (MN-MT) could become a novel solution to challenges uneven and overheating of microwave thawing (MT), while retaining high thawing efficiency, compared to conventional water immersion thawing (WT). In this study, MN-MT was applied to thaw fruit (lychee as an example) for the first time, and was evaluated by comparison with WT, MT and water immersion combined with microwave thawing (WI-MT). Results showed that MN-MT could significantly shorten the thawing time of frozen lychee by 80.67%, 25.86% and 18.83% compared to WT, MT and WI-MT, respectively. Compared to WT, MN-MT was the only thawing treatment which significantly enhanced the release of quercetin-3-O-rutinose-7-O-α-l-rhamnoside, according to HPLC-DAD. Meanwhile, thermal-sensitive procyanidin B2, phenylpropionic acid and protocatechuic acid were found to be protected from degradations only by MN-MT based on UPLC-ESI-QTOF-MS/MS results. In summary, MN-MT is a potential novel treatment for rapid thawing and quality maintenance of frozen fruits.


Assuntos
Frutas , Litchi , Micro-Ondas , Espectrometria de Massas em Tandem , Fenóis , Água
9.
J Agric Food Chem ; 70(46): 14654-14664, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36322531

RESUMO

This study was aimed at exploring the separate and combined anti-hyperlipidemic effect of Shatianyu (Citrus grandis L. Osbeck) flavonoids (SPFEs) and DF (SPDF) on HFD-fed mice after 14-week administration in diet, together with the possible microbiota-mediated mechanisms. SPFEs and SPDF were more effective together than separately in improving serum lipid profiles, decreasing hepatic lipid accumulation, and upregulating the expression of hepatic CPT1a, CYP7A1, ABCG5, and ABCG8. Butyrate has been previously proved to have an anti-hyperlipidemic effect. The fecal butyrate contents were negatively correlative with serum/liver lipid but positively correlated with fecal total bile acids levels, and SPDF + SPFEs had the most fecal butyrate in this study. SPDF or SPFEs enriched microbiota related to acetic and propionic acids production, while SPDF + SPFEs also bloomed norank_f_Muribaculaceae, Dubosiella, Lachnoclostridium, and norank_f_Eubacterium_coprostanoligenes_group, which were positively correlated to fecal butyrate contents. Thus, SPFEs and SPDF might alleviate hyperlipidemia synergistically by regulating microbiota to produce butyrate, thereby regulating lipid metabolism.


Assuntos
Citrus , Microbioma Gastrointestinal , Hiperlipidemias , Camundongos , Animais , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Flavonoides/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fibras na Dieta , Metabolismo dos Lipídeos , Propionatos/farmacologia , Butiratos , Camundongos Endogâmicos C57BL
10.
Front Chem ; 10: 1034911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247661

RESUMO

Human noroviruses (NV) are the most prevalent cause of sporadic and pandemic acute gastroenteritis. NV infections cause substantial morbidity and death globally, especially amongst the aged, immunocompromised individuals, and children. There are presently no authorized NV vaccines, small-molecule therapies, or prophylactics for humans. NV 3 C L protease (3CLP) has been identified as a promising therapeutic target for anti-NV drug development. Herein, we employed a structure-based virtual screening method to screen a library of 700 antiviral compounds against the active site residues of 3CLP. We report three compounds, Sorafenib, YM201636, and LDC4297, that were revealed to have a higher binding energy (BE) value with 3CLP than the control (Dipeptidyl inhibitor 7) following a sequential screening, in-depth molecular docking and visualization, physicochemical and pharmacological property analysis, and molecular dynamics (MD) study. Sorafenib, YM201636, and LDC4297 had BEs of -11.67, -10.34, and -9.78 kcal/mol with 3CLP, respectively, while control had a BE of -6.38 kcal/mol. Furthermore, MD simulations of the two best compounds and control were used to further optimize the interactions, and a 100 ns MD simulation revealed that they form stable complexes with 3CLP. The estimated physicochemical, drug-like, and ADMET properties of these hits suggest that they might be employed as 3CLP inhibitors in the management of gastroenteritis. However, wet lab tests are a prerequisite to optimize them as NV 3CLP inhibitors.

11.
Food Sci Nutr ; 10(6): 2021-2028, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702296

RESUMO

The aim of this study was to extract the polyphenols from three major seaweed species such as Sargassum miyabei, Undaria pinnatifida suringar, and Sargassum thunbergii, which are found in the coastal province (Guangdong), a longest coastal line in China. It was found that the Sargassum thunbergii produced more polyphenols (34.99 mg) as compared to Sargassum miyabei (23.26 mg) and Undaria pinnatifida suringar (25.34 mg), respectively. The orthogonal method was used for the extraction of phenolic compounds and extraction condition of each seaweed species was optimized. The antioxidant activity of extracted polyphenols from all three species stated that the polyphenols extracted from Undaria pinnatifida suringar demonstrated the highest antioxidative activity. Furthermore, gas chromatography-mass spectrometry (GC-MS) was used for qualitative analysis of polyphenols, which revealed that the major components of polyphenols extracted from Undaria pinnatifida suringar were gallic acid and arbutin followed by syringate in Sargassum miyabei and phloretin in Sargassum thunbergii.

12.
J Food Sci ; 87(7): 3026-3035, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638338

RESUMO

The reducing flavor of whole grain bread has been constantly affecting the consumption desire of a significant proportion of consumers. The study presents the use of lychee pulp pomace (LPP) powder to replace certain proportion of wheat flour and produce wheat bread with better quality, while having minimal effects on the volume and improving the nutritional quality. Distinct particle sizes (60-400 µm) of LPP powder were obtained by superfine or ordinary grinding. Effect of different additive proportions (7-19%) of LPP powder on bread dough quality were studied by constrained mixture designs. The volume of fermented doughs subsequently decreased after adding LPP powder. However, LPP powders with smaller particle sizes were able to minimize this effect due to its higher water-holding capacity. The analyses of gluten network showed that smaller particle sizes of LPP powder resulted in a decrease in surface hydrophobicity and increase in the elasticity and stability of gluten network. Finally, optimum mixture formula was composed of 16% LPP powder with 60 µm particle size and 15% water. The study illustrated the potential to make high-quality bread with small particle size of LPP powder. PRACTICAL APPLICATION: The addition of dietary fiber to wheat flour can adversely affect the dough volume and reduce the dough quality. By reducing the particle size of lychee pulp pomace powder, this adverse effect could be minimized while increasing the content of dietary fiber and bound phenolics in the dough. This provides data for the production of high-quality lychee dough bread.


Assuntos
Pão , Litchi , Fibras na Dieta , Farinha , Glutens , Tamanho da Partícula , Pós , Triticum , Água
13.
Int J Biol Macromol ; 211: 150-158, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35568148

RESUMO

This study explored the mechanism underlying the interactions between polysaccharides and ovalbumin-ferulic acid (OVA-FA) and the effect of polysaccharides on OVA-FA-stabilized emulsions. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the polysaccharide OVA-FA interactions mechanism and to resolve the changes in the protein secondary structure and crystal structure. OVA-FA-polysaccharide-stabilized emulsions were studied using confocal laser scanning microscopy (CLSM), and their rheological properties and stability were determined. The results showed that the non-covalent interactions between polysaccharides and OVA-FA led to an increase in the ß-sheet content of OVA and a decrease in the α-helix and random coil contents. The stability of the OVA-FA-polysaccharide-stabilized emulsions was better compared with that of the OVA-FA-stabilized emulsions. By comparing the different OVA-FA-polysaccharide-stabilized emulsions, we observed that OVA-FA-agar did not stabilize the emulsion well, while the OVA-FA-SA- and OVA-FA-KC-stabilized emulsions had good elasticity, and the microstructure and storage stability of the OVA-FA-KC-stabilized emulsion were better. Our findings provide a new perspective for the application of OVA-FA-KC in complex food emulsions.


Assuntos
Ácidos Cumáricos , Polissacarídeos , Emulsões/química , Ovalbumina/química
14.
Food Chem ; 391: 133286, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640344

RESUMO

The paper presents the positive effect of soybean polypeptides (SP) on the stability and the potential hypolipidemic effect of selenium nanoparticles (SeNPs). After preparing SeNPs, SP with different molecular weight were introduced to stabilize SeNPs. We found that the SP with molecular weight >10 kDa (SP5) had the best stabilizing effect on SeNPs. We inferred that the steric resistance resulting from the long chains of SP5 protected SeNPs from collision-mediated aggregation, and the electrostatic repulsions between SP5 and SeNPs also played a positive role in stabilizing SeNPs. The as-prepared SP5-SeNPs were spherical, amorphous and zero valent. It was proved that SeNPs were bound with SP5 through O- and N- groups in SP5, and the main forces were hydrogen bonds and van der Waals forces. The bile salts binding assay showed that the SP5-SeNPs exhibited a high binding capacity to bile salts, which indicated their potential in hypolipidemic application.


Assuntos
Nanopartículas , Selênio , Ácidos e Sais Biliares , Nanopartículas/química , Peptídeos , Selênio/química , Glycine max
15.
Front Nutr ; 9: 849439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369057

RESUMO

Lychee pulp phenolics (LPP) is mainly catabolized in the host colon, increasing the abundances of Bacteroides and Lactobacillus. Herein, five selected gut microbial strains (Bacteroides uniformis, B. thetaiotaomicron, Lactobacillus rhamnosus, L. plantarum, and L. acidophilus) were separately incubated with LPP to ascertain the specific strains participating in phenolic metabolism and the corresponding metabolites. The results indicated that B. uniformis, L. rhamnosus, and L. plantarum were involved in LPP utilization, contributing to 52.37, 28.33, and 45.11% of LPP degradation after 48 h fermentation, respectively. Unprecedentedly, the metabolic pathway of the major phenolic compound quercetin-3-O-rutinose-7-O-α-L-rhamnoside by L. plantarum, appeared to be the direct fission of C-ring at C2-O1 and C3-C4 bonds, which was proved from the occurrence of two substances with the deprotonated molecule [M-H]- ion at m/z 299 and 459, respectively. Meanwhile, it was fully confirmed that B. uniformis participated in the catabolism of isorhamnetin glycoside and procyanidin B2. In the B. uniformis culture, kaempferol was synthesized through dehydroxylation of quercetin which could be catabolized into alphitonin by L. rhamnosus. Furthermore, LPP metabolites exerted higher antioxidant activity than their precursors and gave clues to understand the interindividual differences for phenolic metabolism by gut microbiota.

16.
Food Chem ; 383: 132405, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35168050

RESUMO

The tuna polypeptide (TP) was used as the reducing agent and the stabilizing agent to synthesize a tuna polypeptide selenium nanoparticle (TP-SeNP) via a green method. An animal experiment was conducted to investigate its immunomodulatory and antioxidant effects in vivo. The results indicated that the TP regulated the accumulation and stabilization of the TP-SeNP. And the conversion of selenium was tested to be 20.44%. The TP-SeNP was about 22 nm in diameter, a mix of spherical and quasi-spherical, and amorphous. The reaction between the TP and Na2SeO3 was entropy-driven spontaneous, and the binding force was mainly hydrophobic. Intake of the TP-SeNP could greatly increase the phagocytic activity of the mononuclear phagocytic system, and the contents of immunological molecules. The antioxidant capacity of the liver was also improved.


Assuntos
Nanopartículas , Selênio , Animais , Antioxidantes/química , Nanopartículas/química , Peptídeos , Selênio/química , Atum
17.
J Sci Food Agric ; 102(4): 1381-1390, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363221

RESUMO

BACKGROUND: During the thermal processing of fruit, it has been observed for phenolic compounds to either degrade, polymerize, or transfer into macromolecules. In this study, the bound and free phenolic compound composition, content, and phenolic-related enzyme activity of lychee pulp were investigated to determine whether the free phenolic had converted to bound phenolic during heat-pump drying (HPD). RESULTS: It was found that after HPD, when compared with the fresh lychee pulp (control), the content of bound phenolics of dried lychee pulp had increased by 62.69%, whereas the content of free phenolics of dried lychee pulp decreased by 22.26%. It was also found that the antioxidant activity of bound phenolics had also increased after drying. With the use of high-performance liquid chromatography-tandem mass spectrometry, it was identified that (+)-gallocatechin, protocatechuic aldehyde, isorhamnetin-3-O-rutoside, 3,4-dihydroxybenzeneacetic acid, and 4-hydroxybenzoic acid were newly generated during HPD, when compared with the control sample. After drying, the contents of gallic acid, catechin, 4-hydroxybenzoic acid, vanillin, syringic acid, and quercetin in bound phenolics had also increased, and polyphenol oxidase and peroxidase still showed enzyme activity, which could be related to the conversion of free phenolics to bound phenolics. CONCLUSION: Overall, during the thermal processing of lychee pulp, the free phenolics weres found to be converted into bound phenolics, new substances were generated, and antioxidant activity was increased. Hence, it was concluded that HPD improved the bound phenolics content of lychee pulp, thus providing theoretical support for the lychee processing industry. © 2021 Society of Chemical Industry.


Assuntos
Litchi , Antioxidantes , Cromatografia Líquida de Alta Pressão , Frutas/química , Temperatura Alta , Fenóis/análise , Extratos Vegetais , Espectrometria de Massas em Tandem
18.
Food Sci Biotechnol ; 30(4): 545-553, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936846

RESUMO

The yellow Monascus pigments (YMPs) named monascin and ankaflavin and the orange Monascus pigments (OMPs) named rubropunctatin and monascorubrin are two groups of bioactive components in a mixture state in the Monascus fermented products. In order to separate these two groups of bioactive pigments, a facile macroporous resin-based method was developed. The weak-polar resin CAD-40 was selected from the seven tested macroporous resins as it revealed better properties for the adsorption and desorption of the YMPs and OMPs. Then, CAD-40 resin was used for column-chromatographic separation. After eluted by 4 bed volumes of ethanol, the yellow group (monascin and ankaflavin) and the orange group (rubropunctatin and monascorubrin) were successfully separated and purified, with an increased content from 49.3% and 44.2% in the crude pigment extract to 85.2% and 83.0% in the final products, respectively. This method would be helpful for the large-scale separation and purification of Monascus pigment products with specific bioactivity.

19.
J Agric Food Chem ; 69(11): 3326-3339, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33533603

RESUMO

The preventive effect of lychee pulp phenolics (LPP) on dextran sulfate sodium (DSS)-induced colitis of mice and its underlying mechanisms were investigated in this research. LPP supplementation mitigated DSS-induced breakage of the gut barrier as evidenced by the increased tight junction proteins and the enhanced integrity of epithelial cells. Both LPP and 5-ASA treatments could downregulate the expressions of toll-like receptor 4 (TLR-4), NOD protein-like receptor 3 (NLRP3), and proinflammatory cytokines to normal levels. Notably, treatment with LPP at a dosage of 500 mg/kg/day effectively upregulated FFAR2 and FFAR3 expression and contents of short-chain fatty acids (SCFAs), suggesting the activation of the SCFA-FFAR (free fatty acid receptor) pathway. Consistently, the abundances of probiotic taxa and microbiota (Akkermansia, Lactobacillus, Coprococcus, and Bacteroides uniformis) associated with SCFA synthesis were elevated, whereas harmful bacteria (Enterococcus and Aggregatibacter) were suppressed. These data indicate that LPP ameliorates gut barrier damage, activates the microbiota-SCFA-FFAR signaling cascade, and suppresses the TLR4/NLRP3-NF-κB pathway, and therefore, LPP supplementation could be a promising way to protect the intestinal tract.


Assuntos
Colite , Microbioma Gastrointestinal , Litchi , Microbiota , Animais , Anti-Inflamatórios/uso terapêutico , Bacteroides , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Sulfato de Dextrana/toxicidade , Ácidos Graxos não Esterificados , Ácidos Graxos Voláteis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
20.
Food Funct ; 12(3): 1087-1096, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33416819

RESUMO

We have developed a simple process for the entrapment of nutrients in shear stress induced non-covalent physically entangled tannic acid-gelatin gel in a thin film vortex fluidic device (VFD) operating under continuous flow. This allows control of the porosity and surface area of the pores in order to improve the nutrient entrapment capacity. The VFD microfluidic platform simplifies the processing procedure of physically entangled biopolymers, as a time and cost saving one-step process devoid of any organic solvents, in contrast to the conventional homogenization process, which is also inherently complex, involving multiple-step processing. Moreover, the use of homogenization (as a benchmark to entrap nutrients) afforded much larger porosity and surface area of pores, with lower entrapment capacity of nutrients. Overall, the VFD processing provides a new alternative, bottom-up approach for easy, scalable processing for materials with a high nutrient entrapment capacity.


Assuntos
Gelatina/química , Minerais/química , Taninos/química , Vitaminas/química , Formas de Dosagem , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...