Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(10): e2307119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875768

RESUMO

Shelter forests (or shelter-belts), while crucial for climate regulation, lack monitoring systems, e.g., Internet of Things (IoT) devices, but their abundant wind energy can potentially power these devices using the trees as mounting points. To harness wind energy, an omnidirectional fluid-induced vibration triboelectric nanogenerator (OFIV-TENG) has been developed. The device is installed on shelter forest trees to harvest wind energy from all directions, employing a fluid-induced vibration (FIV) mechanism (fluid-responding structure) that can capture and use wind energy, ranging from low wind speeds (vortex vibration) to high wind speeds (galloping). The rolling-bead triboelectric nanogenerator (TENG) can efficiently harvest energy while minimizing wear and tear. Additionally, the usage of double electrodes results in an effective surface charge density of 21.4 µC m-2 , which is the highest among all reported rolling-bead TENGs. The collected energy is utilized for temperature and humidity monitoring, providing feedback on the effect of climate regulation in shelter forests, alarming forest fires, and wireless wind speed warning. In general, this work provides a promising and rational strategy, using natural resources like trees as the supporting structures, and shows broad application prospects in efficient energy collection, wind speed warning, and environmentally friendliness.

2.
Nat Commun ; 14(1): 2792, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193714

RESUMO

Real-time monitoring of flow turbulence is very difficult but extremely important in fluid dynamics, which plays an important role in flight safety and control. Turbulence can cause airflow to detach at the end of the wings, potentially resulting in the aerodynamic stall of aircraft and causing flight accidents. Here, we developed a lightweight and conformable system on the wing surface of aircraft for stall sensing. Quantitative data about airflow turbulence and the degree of boundary layer separation are provided in situ using conjunct signals provided by both triboelectric and piezoelectric effects. Thus, the system can visualize and directly measure the airflow detaching process on the airfoil, and senses the degree of airflow separation during and after a stall for large aircraft and unmanned aerial vehicles.

3.
Nanoscale ; 15(6): 2820-2827, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688256

RESUMO

Effective power management on the outputs of triboelectric nanogenerators (TENGs) is critical for their practical applications due to the large impedance and unbalanced load matching. Recently proposed voltage multiplying circuits for external-charge excitation and self-charge excitation are usually unstable and require reversal for device restarting and common switched-capacitor-converters usually cause large switching losses. In this work, we fabricated a fractal structured charge-excitation circuit for TENGs using diodes and capacitors. The fractal switched-capacitor-converter coupled with voltage regulator diodes can greatly boost the output charge and current of the TENG without reverse starting. The managed output performance of the TENG can be controlled by the electronic component parameters and external operating frequency. Through the component and condition optimization, the fractal structured charge-excitation TENG (FSC-TENG) can achieve nearly 5.8 times charge boosting and almost 16.8 times power boosting in the pulsed mode. Furthermore, the FSC-TENG successfully drove a hygrothermograph and was integrated into a yoga mat for harvesting human-body motion energy to power an electronic watch and a pedometer. The FSC-TENG with good charge accumulation properties and stability is a promising candidate for practical self-powered applications.

4.
ACS Appl Mater Interfaces ; 14(13): 15849-15858, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333530

RESUMO

In recent years, the two-dimensional material MXene has shown great advantages in the field of wearable electronics and pressure sensors. Toward advanced applications, achieving a conformal pressure sensor with ultrathin thickness and great flexibility through a simple preparation principle, while maintaining its high sensitivity and wide detection range, is still a key challenge for the development of high-performance pressure sensors. Herein, we proposed an optimized mild LiF/HCl etching scheme and successfully achieved a high-concentration (>25 mg/mL) preparation of few-layer Ti3C2Tx MXene. Combining the prepared MXene with an aramid nanofiber (ANF), we designed an ultrathin layered pressure sensor based on an MXene/ANF composite through layer-by-layer suction filtration. The mechanical strength is greatly enhanced by composition with the ANF, while the pure MXene film is fragile. The sensor achieves a high sensitivity of 16.7 kPa-1, wide detection range (>100 kPa), only 10 µm thickness, great flexibility, and up to 10% stretchability, which are greatly beneficial to practical sensors. We demonstrated the wide application perspective of the sensor in human motion monitoring and human-machine interfaces from low pressure (human pulse) to high pressure (push-up).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...