Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Vet Med Int ; 2024: 5593703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318262

RESUMO

The elite bull plays an extremely important role in the genetic progression of the dairy cow population. The previous results indicated the potential positive relationship of large scrotal circumference (SC) with improved semen volume, concentration, and motility. In order to improve bull's semen quantity and quality by selection, it is necessary to estimate the genetic parameters of semen traits and their correlations with other conformation traits such as SC that could be used for an indirect selection. In this study, the genetic parameters of seven semen traits (n = 66,260) and nine conformation traits (n = 3,642) of Holstein bulls (n = 453) were estimated by using the bivariate repeatability animal model with the average information-restricted maximum likelihood (AI-REML) approach. The results showed that the estimated heritabilities of semen traits ranged from 0.06 (total number of motile sperm, TNMS) to 0.37 (percentage of abnormal sperm, PAS) and conformation traits ranged from 0.23 (pin width, PW) to 0.69 (hip height, HH). The highest genetic correlations were found between semen volume per ejaculation (SVPE), semen concentration per ejaculation (SCPE), total number of sperm (TNS), and TNMS traits that were 0.97, 0.98, 1.00, and 0.99, respectively. Phenotypic correlations between SC and SVPE, SCPE, TNS, and TNMS were 0.35, 0.35, 0.48, and 0.42, respectively. In summary, the moderate or high heritability of semen traits indicates that genetic improvement of semen quality by selection is feasible, where SC could be a useful trait for indirect selection or as correlated information to improve semen quantity and production in the practical bull breeding programs.

2.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177344

RESUMO

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Suínos/genética , Animais , Humanos , Genótipo , Fenótipo , Análise de Sequência de RNA
3.
J Dairy Sci ; 107(3): 1535-1548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690717

RESUMO

Disease-related milk losses directly affect dairy herds' profitability and the production efficiency of the dairy industry. Therefore, this study aimed to quantify phenotypic variability in milk fluctuation periods related to diseases and to explore milk fluctuation traits as indicators of disease resilience. By combining high-frequency daily milk yield data with disease records of cows that were treated and recovered from the disease, we estimated milk variability trends within a fixed period around the treatment day of each record for 5 diseases: udder health, reproductive disorders, metabolic disorders, digestive disorders, and hoof health. The average milk yield decreased rapidly from 6 to 8 d before the treatment day for all diseases, with the largest milk reduction observed on the treatment day. Additionally, we assessed the significance of milk fluctuation periods highly related to diseases by defining milk fluctuations as a period of at least 10 consecutive days in which milk yield fell below 90% of the expected milk production values at least once. We defined the development and recovery phases of milk fluctuations using 3,847 milk fluctuation periods related to disease incidences, and estimated genetic parameters of milk fluctuation traits, including milk losses, duration of the fluctuation, variation rate in daily milk yield, and standard deviation of milk deviations for each phase and their genetic correlation with several important traits. In general, the disease-related milk fluctuation periods lasted 21.19 ± 10.36 d with a milk loss of 115.54 ± 92.49 kg per lactation. Compared with the development phase, the recovery phase lasted an average of 3.3 d longer, in which cows produced 11.04 kg less milk and exhibited a slower variation rate in daily milk yield of 0.35 kg/d. There were notable differences in milk fluctuation traits depending on the disease, and greater milk losses were observed when multiple diseases occurred simultaneously. All milk fluctuation traits evaluated were heritable with heritability estimates ranging from 0.01 to 0.10, and moderate to high genetic correlations with milk yield (0.34 to 0.64), milk loss throughout the lactation (0.22 to 0.97), and resilience indicator (0.39 to 0.95). These results indicate that cows with lower milk losses and higher resilience tend to have more stable milk fluctuations, which supports the potential for breeding for more disease-resilient cows based on milk fluctuation traits. Overall, this study confirms the high effect of diseases on milk yield variability and provides insightful information about their relationship with relevant traits in Holstein cattle. Furthermore, this study shows the potential of using high-frequency automatic monitoring of milk yield to assist on breeding practices and health management in dairy cows.


Assuntos
Leite , Resiliência Psicológica , Feminino , Bovinos , Animais , Lactação , Glândulas Mamárias Animais , Fenótipo
4.
BMC Genomics ; 24(1): 733, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049711

RESUMO

BACKGROUND: Eurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs. RESULTS: The findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs. CONCLUSIONS: Our study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs.


Assuntos
Lagos , Sus scrofa , Suínos/genética , Animais , Sus scrofa/genética , Genoma , Fertilidade/genética , Polimorfismo de Nucleotídeo Único , Dinamarca
5.
Genet Sel Evol ; 55(1): 45, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407936

RESUMO

BACKGROUND: The breeding value of a crossbred individual can be expressed as the sum of the contributions from each of the contributing pure breeds. In theory, the breeding value should account for segregation between breeds, which results from the difference in the mean contribution of loci between breeds, which in turn is caused by differences in allele frequencies between breeds. However, with multiple generations of crossbreeding, how to account for breed segregation in genomic models that split the breeding value of crossbreds based on breed origin of alleles (BOA) is not known. Furthermore, local breed proportions (LBP) have been modelled based on BOA and is a concept related to breed segregation. The objectives of this study were to explore the theoretical background of the effect of LBP and how it relates to breed segregation and to investigate how to incorporate breed segregation (co)variance in genomic BOA models. RESULTS: We showed that LBP effects result from the difference in the mean contribution of loci between breeds in an additive genetic model, i.e. breed segregation effects. We found that the (co)variance structure for BS effects in genomic BOA models does not lead to relationship matrices that are positive semi-definite in all cases. However, by setting one breed as a reference breed, a valid (co)variance structure can be constructed by including LBP effects for all other breeds and assuming them to be correlated. We successfully estimated variance components for a genomic BOA model with LBP effects in a simulated example. CONCLUSIONS: Breed segregation effects and LBP effects are two alternative ways to account for the contribution of differences in the mean effects of loci between breeds. When the covariance between LBP effects across breeds is included in the model, a valid (co)variance structure for LBP effects can be constructed by setting one breed as reference breed and fitting an LBP effect for each of the other breeds.


Assuntos
Genômica , Modelos Genéticos , Genômica/métodos , Hibridização Genética , Frequência do Gene , Alelos
6.
Micromachines (Basel) ; 14(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985032

RESUMO

Due to the strong plasticity of Inconel 718 and the significant size effect of micromachining, a large number of burrs will be produced in traditional processing. The addition of ultrasonic vibration during machining can reduce the burr problem. The mechanism of burr generation in traditional micromilling (TMM) and ultrasonic vibration-assisted micromilling (UVAMM) was analyzed by simulation, and verified by corresponding experiments. It is found that applying high-frequency ultrasonic vibration in the milling feed direction can reduce cutting temperature and cutting force, improve chip breaking ability, and reduce burr formation. When the cutting thickness will reach the minimum cutting thickness hmin, the chip will start to form. When A/ƒz > 1/2, the tracks of the two tool heads start to cut, and the chips are not continuous. Some of the best burr suppression effects were achieved under conditions of low cutting speed (Vc), feed per tooth (ƒz), and large amplitude (A). When A is 6 µm, the size and quantity of burr is the smallest. When ƒz reaches 6 µm, large continuous burrs appear at the top of the groove. The experimental results further confirm the accuracy of the simulation results and provide parameter reference.

7.
Animals (Basel) ; 13(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36830423

RESUMO

The size of the reference population is critical in order to improve the accuracy of genomic prediction. Indeed, improving genomic prediction accuracy by combining multinational reference populations has proven to be effective. In this study, we investigated the improvement of genomic prediction accuracy in seven complex traits (i.e., milk yield; fat yield; protein yield; somatic cell count; body conformation; feet and legs; and mammary system conformation) by combining the Chinese and Nordic Holstein reference populations. The estimated genetic correlations between the Chinese and Nordic Holstein populations are high with respect to protein yield, fat yield, and milk yield-whereby these correlations range from 0.621 to 0.720-and are moderate with respect to somatic cell count (0.449), but low for the three conformation traits (which range from 0.144 to 0.236). When utilizing the joint reference data and a two-trait GBLUP model, the genomic prediction accuracy in the Chinese Holsteins improves considerably with respect to the traits with moderate-to-high genetic correlations, whereas the improvement in Nordic Holsteins is small. When compared with the single population analysis, using the joint reference population for genomic prediction in younger animals, results in a 2.3 to 8.1 percent improvement in accuracy. Meanwhile, 10 replications of five-fold cross-validation were also implemented in order to evaluate the performance of joint genomic prediction, thereby resulting in a 1.6 to 5.2 percent increase in accuracy. With respect to joint genomic prediction, the bias was found to be quite low. However, for traits with low genetic correlations, the joint reference data do not improve the prediction accuracy substantially for either population.

8.
Micromachines (Basel) ; 14(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837976

RESUMO

Nodular cast iron QT700-2 is extensively used in automobile engine crankshaft parts due to its prime mechanical properties. The journal of a crankshaft is a curved surface, and traditional wheel grinding easily causes grinding burn and surface and subsurface damage. Shape adaptive grinding (SAG) is a flexible grinding technology, which has the advantages of low grinding force and temperature, and good grinding quality. It is suitable for machining curved surface parts with complex shapes. Therefore, the SAG surface integrity of nodular cast iron QT700-2 was experimentally investigated. The influence of grinding parameters on grinding force, material removal rate, grinding temperature, and surface integrity was studied, and the machining performance of SAG tools was evaluated. It was concluded that the grain size in SAG is the most important factor affecting the grinding force, material removal rate, and surface roughness; the influence of SAG grinding is very weak, mainly removing the workpiece material. Then, the influence law of SAG technology on the surface integrity of nodular cast iron QT700-2 was summarized, and the optimal grinding parameters were obtained, providing a reference for the curved surface grinding of nodular cast iron QT700-2 in the future.

9.
J Anim Breed Genet ; 140(4): 355-365, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36843354

RESUMO

Reproductive traits of dairy cattle are bound to the actual efficiency of farm operation, which therefore show great economic importance. Among them, some traits were deemed to be simultaneously affected by service sire and mating cow. Service sires are proved to play an important role in reproduction process of cows. However, limited study explored the genetic effect of service sire (GESS), let alone the genomic prediction of this effect. In the present study, 2244 genotyped bulls together with phenotypic records were used to predict the GESS on conception rate, 56-day non-return rate, calving ease, stillbirth and gestation length. The feasibilities of multi-step genomic best linear unbiased predictor (msGBLUP) and single-step genomic best linear unbiased predictor (ssGBLUP) were investigated under different scenarios, that is, different marker densities and validation population. The predictive accuracies and unbiasedness for GESS ranged from 0.159 to 0.647 and from 0.202 to 2.018, respectively, when validated on young bulls, while the accuracies and unbiasedness ranged from 0.409 to 0.802 and 0.333 to 1.146 when validated on random split data sets. It is feasible to predict GESS on reproductive traits by using a linear mixed model and genomic data, and high-density marker panel had limited contribution to the prediction. This research investigated the potential factors that influence the genomic prediction of GESS on reproductive traits and indicated the possibility of genomic selection on GESS, both in ideal and practical circumstances.


Assuntos
Genoma , Reprodução , Bovinos/genética , Animais , Feminino , Masculino , Reprodução/genética , Genoma/genética , Genótipo , Genômica/métodos , Fenótipo
10.
J Anim Sci Biotechnol ; 14(1): 1, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593522

RESUMO

BACKGROUND: Survival from birth to slaughter is an important economic trait in commercial pig productions. Increasing survival can improve both economic efficiency and animal welfare. The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.  RESULTS: We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model, a logit model, and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes (0, 1). The results show that in the case of only alive animals having genotype data, unbiased genomic predictions can be achieved when using variances estimated from pedigree-based model. Models using genomic information achieved up to 59.2% higher accuracy of estimated breeding value compared to pedigree-based model, dependent on genotyping scenarios. The scenario of genotyping all individuals, both dead and alive individuals, obtained the highest accuracy. When an equal number of individuals (80%) were genotyped, random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes. The linear model, logit model and probit model achieved similar accuracy. CONCLUSIONS: Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes, but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06% to 6.04%.

11.
Mol Cell Biochem ; 478(1): 1-11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708865

RESUMO

This study aimed to explore the role of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis (CM).Patients were assigned into 4 groups (n = 40/group): group A (HIV/AIDS with CM), group B (HIV/AIDS with tuberculosis), group C (HIV/AIDS), and group D (CM). The levels of IL-10 and associated indicators were measured and the correlations were analyzed by Pearson correlation and partial correlation method. In plasma and cerebrospinal fluid (CSF), no significant difference was observed on IL-10 level between group A and other groups (P > 0.050). R values for IL-10 and relevant indicators in blood were as follows (P < 0.050): group A, IFN-γ (-0.377), IL-12 (0.743), IL-4 (0.881), and IL-6 (0.843); group B, IL-12 (0.740), IL-4 (0.573), and IL-6 (0.900); group C, IL-12 (0.402) and IL-4 (0.896); group D, IL-12 (0.575), IL-4 (0.852), and CD8 (0.325). R values for IL-10 and related indicators in CSF were as follows (P < 0.050): group A, TNF-α (0.664), IL-4 (0.852), white blood cells (WBCs, 0.321) and total protein (TP, 0.330); group B, TNF-α (0.566), IL-4 (0.702), and lactate dehydrogenase (LDH, 0.382); group D, IFN-γ (0.807) and IL-4 (0.441). IL-10 level was positively correlated with IL-4, IL-6, IL-12, TNF-α, WBC, and TP in blood or CSF, and negatively correlated with IFN-γ in blood, suggesting that IL-10 affected both pro-inflammatory and anti-inflammatory activities in the pathogenesis of HIV/AIDS with CM.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Meningite Criptocócica , Humanos , Infecções por HIV/complicações , Interleucina-10 , Interleucina-12 , Interleucina-4 , Interleucina-6 , Meningite Criptocócica/líquido cefalorraquidiano , Fator de Necrose Tumoral alfa
12.
Evol Appl ; 15(12): 2054-2066, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540634

RESUMO

Integrating the single-nucleotide polymorphisms (SNPs) significantly affecting target traits from imputed whole-genome sequencing (iWGS) data into the genomic prediction (GP) model is an economic, efficient, and feasible strategy to improve prediction accuracy. The objective was to dissect the genetic architecture of intramuscular fat content (IFC) by genome wide association studies (GWAS) and to investigate the accuracy of GP based on pedigree-based BLUP (PBLUP) model, genomic best linear unbiased prediction (GBLUP) models and Bayesian mixture (BayesMix) models under different strategies. A total of 482 Suhuai pigs were genotyped using an 80 K SNP chip. Furthermore, 30 key samples were selected for resequencing and were used as a reference panel to impute the 80 K chip data to the WGS dataset. The 80 K data and iWGS data were used to perform GWAS and test GP accuracies under different scenarios. GWAS results revealed that there were four major regions affecting IFC. Two important functional candidate genes were found in the two most significant regions, including protein kinase C epsilon (PRKCE) and myosin light chain 2 (MYL2). The results of the predictions showed that the PBLUP model had the lowest reliability (0.096 ± 0.032). The reliability (0.229 ± 0.035) was improved by replacing pedigree information with 80 K chip data. Compared with using 80 K SNPs alone, pruning iWGS SNPs with the R-squared cutoff of linkage disequilibrium (0.55) led to a slight improvement (0.006), adding significant iWGS SNPs led to an improvement of reliability by 0.050 when using a one-component GBLUP, a further increase of 0.033 when using a two-component GBLUP model. For BayesMix models, compared with using 80 K SNPs alone, adding additional significant iWGS SNPs into one- or two-component BayesMix models led to improvements of reliabilities for IFC by 0.040 and 0.089, respectively. Our results may facilitate further identification of causal genes for IFC and may be beneficial for the improvement of IFC in pig breeding programs.

13.
J Dairy Sci ; 105(12): 9822-9836, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307242

RESUMO

For genomic prediction of crossbred animals, models that account for the breed origin of alleles (BOA) in marker genotypes can allow the effects of marker alleles to differ depending on their ancestral breed. Previous studies have shown that genomic estimated breeding values for crossbred cows can be calculated using the marker effects that are estimated in the contributing pure breeds and combined based on estimated BOA in the genotypes of the crossbred cows. In the presented study, we further exploit the BOA information for improving the prediction of genomic breeding values of crossbred dairy cows. We investigated 2 types of BOA-derived breed proportions: global breed proportions, defined as the proportion of marker alleles assigned to each breed across the whole genome; and local breed proportions (LBP), defined as the proportions of alleles on chromosome segments which were assigned to each breed. Further, we investigated 2 BOA-derived measures of heterozygosity for the prediction of total genetic value. First, global breed heterozygosity, defined as the proportion of marker loci that have alleles originating in 2 different breeds over the whole genome. Second, local breed heterozygosity (LBH), defined as proportions of marker loci on chromosome segments that had alleles originating in 2 different breeds. We estimated variance related to LBP and LBH on the remaining variation after accounting for prediction with solutions from the genomic evaluations of the pure breeds and validated alternative models for production traits in 5,214 Danish crossbred dairy cows. The estimated LBP variances were 0.9, 1.2, and 1.0% of phenotypic variance for milk, fat, and protein yield, respectively. We observed no clear LBH effect. Cross-validation showed that models with LBP effects had a numerically small but statistically significantly higher predictive ability than models only including global breed proportions. We observed similar improvement in accuracy by the model having an across crossbred residual additive genetic effect, accounting for the additive genetic variation that was not accounted for by the solutions from purebred. For genomic predictions of crossbred animals, estimated BOA can give useful information on breed proportions, both globally in the genome and locally in genome regions, and on breed heterozygosity.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Feminino , Bovinos/genética , Animais , Genômica , Alelos , Genótipo , Fenótipo
14.
Materials (Basel) ; 15(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36143622

RESUMO

The purpose of this work is to investigate the effect of the WC content on the surface characteristics and nanoindentation behaviors of WC/Ni-based composite laser-clad coatings. Four NiCrSiBC coatings with WC wt% of 30%, 40%, 50%, and 60%, respectively, were clad on carbon steel substrates using a laser. The morphologies and phase compositions of four clad coatings were comparatively observed. In addition, the hardness and elastic modulus values of the four coatings were measured and quantitatively calculated. As a result, with the increase in WC, the coating grains were more refined. Meanwhile, cracks and WC particle breakage occurred in the 50-60% WC coatings, whereas this was not found in the 30-40% WC coatings. When the WC content increased from 40% up to 50%, the coating hardness and elastic modulus significantly increased. However, a further increase in WC from 50% to 60% did not result in considerable improvement in coating quality but considerably worsened the coating's cracking behavior instead. Therefore, for WC/Ni-based composite coatings, a threshold exists for the WC content, and this value was 50% within the experimental scope of this study.

15.
Materials (Basel) ; 15(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36013712

RESUMO

The preparation of functional coatings on metal substrates is an effective method to enhance the surface of steel structures with good serviceability in applications for engineering parts. The objective of this research is to analyze the surface properties of two sorts of medium-entropy alloy (MEA) coatings prepared by laser cladding. After cladding, the two prepared coatings were strengthened by ultrasonic burnishing (UB) treatment. Cladding coating samples before and after being UB-treated were comparatively tested in order to investigate the process effects of UB. When compared with corresponding untreated coating samples, the roughness values of the two sorts of UB-treated samples were decreased by 88.7% and 87.6%, the porosities were decreased by 63.8% and 73.4%, and the micro-hardness values were increased by 41.7% and 32.7%, respectively. Furthermore, the two sorts of UB-treated coating samples exhibited better mechanical properties and wear resistance than corresponding untreated samples.

16.
J Dairy Sci ; 105(8): 6749-6759, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840408

RESUMO

High mortality and involuntary culling rates cause great economic losses to the worldwide dairy cattle industry. However, there is low emphasis on wellness traits in replacement animals (dairy calves and replacement heifers) during their development stages in modern dairy cattle breeding programs. Therefore, the main objectives of this study were to estimate genetic parameters of wellness traits in replacement cattle (replacement wellness traits) and obtain their genetic correlations with 12 cow health and longevity traits in the Chinese Holstein population. Seven replacement wellness traits were analyzed, including birth weight, survival from 3 to 60 d (Sur1), survival from 61 to 365 d (Sur2), survival from 366 d to the first calving (Sur3), calf diarrhea, calf pneumonia, and calf serum total protein (STP). Single and bivariate animal models were employed to estimate (co)variance components using the data from 189,980 Holstein cattle. The genetic correlations between replacement wellness traits and cow longevity, health traits were calculated by employing bivariate models, including 6 longevity traits and 6 health traits (clinical mastitis, metritis, ketosis, displaced abomasum, milk fever, and hoof health or hoof disease). The estimated heritabilities (± SE) were 0.335 (± 0.008), 0.088 (± 0.005), 0.166 (± 0.006), 0.102 (±0 .006), 0.048 (± 0.003), 0.063 (± 0.004), and 0.170 (± 0.019) for birth weight, Sur1, Sur2, Sur3, pneumonia, diarrhea, and STP, respectively. The majority of the genetic correlations among the 7 replacement wellness traits were negligible. The genetic correlations among Sur1, Sur2, and Sur3 ranged from 0.112 (Sur1 and Sur3) to 0.445 (Sur1 and Sur2) when fitting a linear model (estimates in the observed scale), and from 0.560 (Sur1 and Sur3) to 0.773 (Sur1 and Sur2) when fitting a threshold model (estimates in the liability scale). The genetic correlations between replacement wellness and cow longevity were low (absolute value lower than 0.30), but some of them were significantly different from zero. Compared with other replacement wellness traits, Sur3 and STP had relatively high genetic correlations with cow longevity. Replacement wellness traits are heritable and can be improved through direct genetic and genomic selection. The results from the current study will contribute for better balancing dairy cattle breeding goals to genetically improve dairy cattle wellness in the period from birth to first calving.


Assuntos
Doenças dos Bovinos , Longevidade , Animais , Peso ao Nascer , Bovinos/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Diarreia/veterinária , Feminino , Lactação/genética , Longevidade/genética , Leite
17.
J Dairy Sci ; 105(6): 5178-5191, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35465992

RESUMO

Genomic predictions have been applied for dairy cattle for more than a decade with great success, but genomic estimated breeding values (GEBV) are not widely available for crossbred dairy cows. The large reference populations already in place for genomic evaluations of many pure breeds makes it interesting to use the accurate solutions, in particular the estimated marker effects, from these evaluations for calculation of GEBV for crossbred heifers and cows. Effects of marker alleles in crossbred animals can depend on breed origin of the alleles (BOA). Therefore, our aim was to investigate if reliable GEBV for crossbred dairy cows can be obtained by combining estimated marker effects from purebred evaluations based on BOA. We used data on 5,467 Danish crossbred dairy cows with contributions from Holstein, Jersey, and Red Dairy Cattle breeds. We assessed BOA assignment on their genotypes and found that we could assign 99.3% of the alleles to a definite breed of origin. We compared GEBV for 2 traits, protein yield and interval between first and last insemination of cows, with 2 models that both combine estimated marker effects from the genomic evaluations of the pure breeds: a breed of origin model that accounts for BOA and a breed proportion model that only accounts for genomic breed proportions in the crossbred animals. We accounted for the difference in level between the purebred evaluations by including intercepts in the models based on phenotypic averages. The predictive ability for protein yield was significantly higher from the breed of origin model, 0.45 compared with 0.43 from the breed proportion model. Furthermore, for the breed proportion model, the GEBVs had level bias, which made comparison across groups with different breed composition skewed. We therefore concluded that reliable genomic predictions for crossbred dairy cows can be obtained by combining estimated marker effects from the genomic evaluations of purebreds using a model that accounts for BOA.


Assuntos
Genômica , Alelos , Animais , Bovinos/genética , Feminino , Genótipo , Fenótipo
18.
Heredity (Edinb) ; 128(3): 154-158, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132207

RESUMO

The dominance effect is considered to be a key factor affecting complex traits. However, previous studies have shown that the improvement of the model, including the dominance effect, is usually less than 1%. This study proposes a novel genomic prediction method called CADM, which combines additive and dominance genetic effects through locus-specific weights on heterozygous genotypes. To the best of our knowledge, this is the first study of weighting dominance effects for genomic prediction. This method was applied to the analysis of chicken (511 birds) and pig (3534 animals) datasets. A 5-fold cross-validation method was used to evaluate the genomic predictive ability. The CADM model was compared with typical models considering additive and dominance genetic effects (ADM) and the model considering only additive genetic effects (AM). Based on the chicken data, using the CADM model, the genomic predictive abilities were improved for all three traits (body weight at 12th week, eviscerating percentage, and breast muscle percentage), and the average improvement in prediction accuracy was 27.1% compared with the AM model, while the ADM model was not better than the AM model. Based on the pig data, the CADM model increased the genomic predictive ability for all the three pig traits (trait names are masked, here designated as T1, T2, and T3), with an average increase of 26.3%, and the ADM model did not improve, or even slightly decreased, compared with the AM model. The results indicate that dominant genetic variation is one of the important sources of phenotypic variation, and the novel prediction model significantly improves the accuracy of genomic prediction.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Genômica/métodos , Genótipo , Heterozigoto , Fenótipo , Suínos/genética
20.
J Dairy Sci ; 105(3): 2426-2438, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033341

RESUMO

This study investigated the reliability of genomic prediction (GP) using breed origin of alleles (BOA) approach in the Nordic Red (RDC) population, which has an admixed population structure. The RDC population consists of animals with varying degrees of genetic materials from the Danish Red (RDM), Swedish Red (SRB), Finnish Ayrshire (FAY), and Holstein (HOL) because bulls have been used across the breeds. The BOA approach was tested using 39,550 RDC animals in the reference population and 11,786 in the validation population. Deregressed proofs (DRP) of milk, fat and protein were used as response variable for GP. Direct genomic breeding values (DGV) for animals in the validation population were calculated with (BOA model) or without (joint model) considering breed origin of alleles. The joint model assumed homogeneous marker effects and a single set of marker effects were estimated, whereas BOA model assumed heterogeneous marker effects, and different sets of marker effects were estimated across the breeds. For the BOA approach, we tested scenarios assuming both correlated (BOA_cor) and uncorrelated (BOA_uncor) marker effects between the breeds. Additionally, we investigated GP using a standard Illumina 50K chip and including SNP selected from imputed whole-genome sequencing (50K+WGS). We also studied the effect of estimating (co)variances for genome regions of different sizes to exploit the information of the genome regions contributing to the (co)variance between the breeds. Region sizes were set as 1 SNP, a group of 30 or 100 adjacent SNP, or the whole genome. Reliability of DGV was measured as squared correlations between DGV and DRP divided by the reliability of DRP. Across the 3 traits, in general, RS30 and RS100 SNP yielded the highest reliabilities. Including WGS SNP improved reliabilities in almost all scenarios (0.297 on average for 50K and 0.307 on average for 50K+WGS). The BOA_uncor (0.233 on average) was inferior to the joint model (0.339 on average), but the reliabilities obtained using BOA_cor (0.334 on average) in most cases were not significantly different from those obtained using the joint model. The results indicate that both including additional whole-genome sequencing SNP and dividing the genome into fixed regions improve GP in the RDC. The BOA models have the potential to increase the reliability of GP, but the benefit is limited in populations with a high exchange of genetic material for a long time, as is the case for RDC.


Assuntos
Bovinos , Genômica , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Cruzamento , Bovinos/genética , Genômica/métodos , Genótipo , Masculino , Fenótipo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...