Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 726, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670311

RESUMO

GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.

2.
Front Plant Sci ; 11: 604690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424904

RESUMO

GRAS genes, which form a plant-specific transcription factor family, play an important role in plant growth and development and stress responses. However, the functions of GRAS genes in soybean (Glycine max) remain largely unknown. Here, 117 GRAS genes distributed on 20 chromosomes were identified in the soybean genome and were classified into 11 subfamilies. Of the soybean GRAS genes, 80.34% did not have intron insertions, and 54 pairs of genes accounted for 88.52% of duplication events (61 pairs). RNA-seq analysis demonstrated that most GmGRASs were expressed in 14 different soybean tissues examined and responded to multiple abiotic stresses. Results from quantitative real-time PCR analysis of six selected GmGRASs suggested that GmGRAS37 was significantly upregulated under drought and salt stress conditions and abscisic acid and brassinosteroid treatment; therefore, this gene was selected for further study. Subcellular localization analysis revealed that the GmGRAS37 protein was located in the plasma membrane, nucleus, and cytosol. Soybean hairy roots overexpressing GmGRAS37 had improved resistance to drought and salt stresses. In addition, these roots showed increased transcript levels of several drought- and salt-related genes. The results of this study provide the basis for comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in soybean.

3.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726763

RESUMO

Pentatricopeptide-repeat (PPR) proteins were identified as a type of nucleus coding protein that is composed of multiple tandem repeats. It has been reported that PPR genes play an important role in RNA editing, plant growth and development, and abiotic stresses in plants. However, the functions of PPR proteins remain largely unknown in soybean. In this study, 179 DYW subgroup PPR genes were identified in soybean genome (Glycine max Wm82.a2.v1). Chromosomal location analysis indicated that DYW subgroup PPR genes were mapped to all 20 chromosomes. Phylogenetic relationship analysis revealed that DYW subgroup PPR genes were categorized into three distinct Clusters (I to III). Gene structure analysis showed that most PPR genes were featured by a lack of intron. Gene duplication analysis demonstrated 30 PPR genes (15 pairs; ~35.7%) were segmentally duplicated among Cluster I PPR genes. Furthermore, we validated the mRNA expression of three genes that were highly up-regulated in soybean drought- and salt-induced transcriptome database and found that the expression levels of GmPPR4 were induced under salt and drought stresses. Under drought stress condition, GmPPR4-overexpressing (GmPPR4-OE) plants showed delayed leaf rolling; higher content of proline (Pro); and lower contents of H2O2, O2- and malondialdehyde (MDA) compared with the empty vector (EV)-control plants. GmPPR4-OE plants exhibited increased transcripts of several drought-inducible genes compared with EV-control plants. Our results provided a comprehensive analysis of the DYW subgroup PPR genes and an insight for improving the drought tolerance in soybean.


Assuntos
Proteínas de Transporte , Regulação da Expressão Gênica de Plantas , Glycine max , Família Multigênica , Pressão Osmótica , Proteínas de Soja , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Desidratação/genética , Desidratação/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Soja/biossíntese , Proteínas de Soja/genética , Glycine max/genética , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...