Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128638

RESUMO

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.

2.
ACS Sens ; 4(4): 808-821, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30864438

RESUMO

Food safety is a major factor affecting public health and the well-being of society. A possible solution to control food-borne illnesses is through real-time monitoring of the food quality throughout the food supply chain. The development of emerging technologies, such as active and intelligent packaging, has been greatly accelerated in recent years, with a focus on informing consumers about food quality. Advances in the fields of sensors and biosensors has enabled the development of new materials, devices, and multifunctional sensing systems to monitor the quality of food. In this Review, we place the focus on an in-depth summary of the recent technological advances that hold the potential for being incorporated into food packaging to ensure food quality, safety, or monitoring of spoilage. These advanced sensing systems usually target monitoring gas production, humidity, temperature, and microorganisms' growth within packaged food. The implementation of portable and simple-to-use hand-held devices is also discussed in this Review. We highlight the mechanical and optical properties of current materials and systems, along with various limitations associated with each device. The technologies discussed here hold great potential for applications in food packaging and bring us one step closer to enable real-time monitoring of food throughout the supply chain.


Assuntos
Embalagem de Alimentos , Inocuidade dos Alimentos , Materiais Inteligentes , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Colorimetria/instrumentação , Colorimetria/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Papel , Smartphone
3.
Biomaterials ; 194: 195-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30612006

RESUMO

In recent years, the advent of intestinal organoid culture systems has revolutionized in vitro studies of the small intestine epithelium. Intestinal organoids are derived from self-organizing and self-renewing intestinal stem cells and closely recapitulate the native intestinal epithelium. They therefore represent a more physiologically-relevant in vitro model than conventional cell cultures for studying intestinal development, biology and pathophysiology. Moreover, they represent a promising and unprecedented new tool in the realm of regenerative and personalized medicine. In this review, we outline the current approaches to develop intestinal organoids and describe the strategies used to induce complexity, multicellularity and modularity in organoid culture systems; this knowledge will contribute to improved biomimicry of the organoid culture system. We focus on co-culture systems and explore the convergence of organoid technology and engineering principals. Finally, we describe applications of intestinal organoids in various fields.


Assuntos
Mucosa Intestinal/citologia , Organoides/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Humanos , Intestinos/citologia , Engenharia Tecidual/instrumentação
4.
ACS Nano ; 12(4): 3287-3294, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29621883

RESUMO

Here, we report the development of a transparent, durable, and flexible sensing surface that generates a fluorescence signal in the presence of a specific target bacterium. This material can be used in packaging, and it is capable of monitoring microbial contamination in various types of food products in real time without having to remove the sample or the sensor from the package. The sensor was fabricated by covalently attaching picoliter-sized microarrays of an E. coli-specific RNA-cleaving fluorogenic DNAzyme probe (RFD-EC1) to a thin, flexible, and transparent cyclo-olefin polymer (COP) film. Our experimental results demonstrate that the developed (RFD-EC1)-COP surface is specific, stable for at least 14 days under various pH conditions (pH 3-9), and can detect E. coli in meat and apple juice at concentrations as low as 103 CFU/mL. Furthermore, we demonstrate that our sensor is capable of detecting bacteria while still attached to the food package, which eliminates the need to manipulate the sample. The developed biosensors are stable for at least the shelf life of perishable packaged food products and provide a packaging solution for real-time monitoring of pathogens. These sensors hold the potential to make a significant contribution to the ongoing efforts to mitigate the negative public-health-related impacts of food-borne illnesses.


Assuntos
DNA Catalítico/química , Contaminação de Alimentos/análise , Embalagem de Alimentos , Sondas Moleculares/química , Impressão Tridimensional , Técnicas Biossensoriais , DNA Catalítico/metabolismo , Escherichia coli/isolamento & purificação , Fluorescência , Concentração de Íons de Hidrogênio , Sondas Moleculares/metabolismo , Polímeros/química , Polímeros/metabolismo , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA