Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(12): 3115-3128, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451094

RESUMO

The development of safe and effective delivery systems is critical for the clinical applications of siRNA-based therapeutics. Polymer-based vectors have garnered significant attention owing to their structural flexibility and functional tunability. Polyethyleneimine (PEI) has been extensively studied for nucleic acid delivery; nevertheless, its high cytotoxicity has posed challenges for clinical applications. In this study, we have reported poly(glycidyl amine) (PGAm), a linear PEI analogue, demonstrating remarkable siRNA delivery efficacy and improved biocompatibility. By introducing three aromatic moieties (tyrosine, p-hydroxybenzenepropanoic acid, and phenylalanine) at varying ratios to further modify PGAms, we successfully constructed a library comprising 36 PGAm-based carriers. In vitro evaluations revealed that PGAm-based carriers exhibited significantly enhanced biocompatibility and reduced non-specific protein absorption in comparison to PEI25k. Among them, 10 modified PGAms achieved a knockdown of target gene expressions exceeding 80%, and 26 modified PGAms maintained over 70% cell viability when utilized for the in vitro delivery of siRNA to HeLa cells. Explorations into the structure-activity relationship of PGAm-based polyplex nanoparticles (NPs) indicated that the siRNA delivery efficacy of NPs depended on factors such as the molecular weight of PGAm precursors, the type of modifying moieties, and the modification ratio. Furthermore, it was demonstrated that two top-performing NPs, namely 2T100/siLuc and 2A50/siLuc, exhibited potent silencing of target genes in tumors following i.v. injection into mice bearing HeLa-Luc xenografts. The in vivo efficacy of the selected NPs was further validated by a remarkable anti-cancer effect when employed for the delivery of siRNA targeting polo-like kinase 1 (siPLK1) to mice with PC-3 xenograft tumors. The intravenous administration of NPs resulted in a substantial inhibition of tumor growth without significant toxicity. These findings demonstrate the feasibility of employing PGAm in siRNA delivery and provide valuable insights for the development of efficient siRNA carriers based on PGAm.


Assuntos
Aminas , Neoplasias , Humanos , Animais , Camundongos , Células HeLa , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Polímeros
2.
Macromol Biosci ; 22(12): e2200232, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36086889

RESUMO

The development of effective and safe delivery carriers is one of the prerequisites for the clinical translation of siRNA-based therapeutics. In this study, a library of 144 functional triblock polymers using ring-opening polymerization (ROP) and thiol-ene click reaction is constructed. These triblock polymers are composed of hydrophilic poly (ethylene oxide) (PEO), hydrophobic poly (ε-caprolactone) (PCL), and cationic amine blocks. Three effective carriers are discovered by high-throughput screening of these polymers for siRNA delivery to HeLa-Luc cells. In vitro evaluation shows that siLuc-loaded nanoparticles (NPs) fabricated with leading polymer carriers exhibit sufficient knockdown of luciferase genes and relatively low cytotoxicity. The chemical structure of polymers significantly affects the physicochemical properties of the resulting siRNA-loaded NPs, which leads to different cellular uptake of NPs and endosomal escape of loaded siRNA and thus the overall in vitro siRNA delivery efficacy. After systemic administration to mice with xenograft tumors, siRNA NPs based on P2-4.5A8 are substantially accumulated at tumor sites, suggesting that PEO and PCL blocks are beneficial for improving blood circulation and biodistribution of siRNA NPs. This functional triblock polymer platform may have great potential in the development of siRNA-based therapies for the treatment of cancers.


Assuntos
Nanopartículas , Polímeros , Humanos , Camundongos , Animais , Polímeros/química , RNA Interferente Pequeno/química , Distribuição Tecidual , Nanopartículas/uso terapêutico , Nanopartículas/química , Polietilenoglicóis/química , Portadores de Fármacos/farmacologia , Portadores de Fármacos/química
3.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563405

RESUMO

Polyethylenimine (PEI) has been widely used in gene delivery. However, its high cytotoxicity and undesired non-specific protein adsorption hinder the overall delivery efficacy and the practical applications of PEI-based gene delivery systems. In this study, we prepared hydrophobically modified PEIs (H-PEIs) via the reaction of octanal with 40% of primary amines in PEI25k and PEI10k, respectively. Two common zwitterionic molecules, 1,3-propanesultone and ß-propiolactone, were then used for the modification of the resulting H-PEIs to construct polycationic gene carriers with zwitterionic properties (H-zPEIs). The siRNA delivery efficiency and cytotoxicity of these materials were evaluated in Hela-Luc and A549-Luc cell lines. Compared with their respective parental H-PEIs, different degrees of zwitterionic modification showed different effects in reducing cytotoxicity and delivery efficiency. All zwitterion-modified PEIs showed excellent siRNA binding capacity, reduced nonspecific protein adsorption, and enhanced stability upon nuclease degradation. It is concluded that zwitterionic molecular modification is an effective method to construct efficient vectors by preventing undesired interactions between polycationic carriers and biomacromolecules. It may offer insights into the modification of other cationic carriers of nucleic acid drugs.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina , Terapia Genética , Células HeLa , Humanos , Polietilenoimina/química , RNA Interferente Pequeno/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...